Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solution structure of the Kluyveromyces lactis LAC9 Cd2Cys6 DNA-binding domain

Abstract

The Zn2Cys6 DNA-binding domain has been identified by sequence homology in approximately forty fungal proteins, including the K. lactis LAC9 transcriptional activator. Using 1H NMR spectroscopy, we have determined the solution structure of a cadmium-substituted form of the LAC9 DNA-binding domain. We have complemented this approach by applying a series of 113Cd-1H NMR experiments, including several novel heteroTOCSY-based techniques. The DNA-binding domain forms a core of two α-helix/extended strand segments around the Cd2 binuclear cluster, with a network of amide proton-cysteinyl Sγ hydrogen bonds stablizing the cluster. Comparison with other Zn2Cys6 domain structures provides insight into the common structural elements used in metal coordination and DNA binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pan, T. & Coleman, J.E. Structure and function of the Zn(II) binding site within the DNA-binding domain of the GAL4 transcription factor. Proc. natn. Acad. Sci. U.S.A. 86, 3145–3149 (1989).

    Article  CAS  Google Scholar 

  2. Gardner, K.H., Pan, T., Narula, S., Rivera, E. & Coleman, J.E. Structure of the binuclear metal-binding site in the GAL4 transcription factor. Biochemistry 30, 11292–11302 (1991).

    Article  CAS  Google Scholar 

  3. Baleja, J.D., Marmorstein, R., Harrison, S.C. & Wagner, G. Solution structure of the DNA binding domain of Cd2-GAL4 from S, cerevisiae. Nature 356, 450–453 (1992).

    Article  CAS  Google Scholar 

  4. Kraulis, P.J., Raine, A.R.C. Gadhavi, P.L. & Laue, E.D. Structure of the DNA-binding domain of zinc GAL4. Nature 356, 448–450 (1992).

    Article  CAS  Google Scholar 

  5. Marmorstein, R., Carey, M., Ptashne, M. & Harrison, S.C. DNA recognition by GAL4: structure of a protein-DNA complex. Nature 356, 408–414 (1992).

    Article  CAS  Google Scholar 

  6. Marmorstein, R. & Harrison, S.C. Crystal structure of a PPR1-DNA complex: DNA recognition by proteins containing a Zn2Cys6 binuclear cluster. Genes Dev. 8, 2504–2512 (1994).

    Article  CAS  Google Scholar 

  7. Johnston, M. A model fungal gene regulatory mechanism: the GALgenes of Saccharomyces Cerevisiae. Microbiol. Rev. 51, 458–476 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dickson, R.C. & Riley, M.I. in Yeast genetic engineering (eds Barr, P.J., Brake, A.J. & Valenzuela, P.) 19–40 (Butterworths, Boston; 1989).

    Google Scholar 

  9. Salmeron, J.M.J. & Johnston, S.A. Analysis of the Kluyveromyces lactis positive regulatory gene LAC9 reveals functional homology to, but sequence divergence from, the Saccharomyces cerevisiae GALA gene. Nucl. Acids Res. 14, 7767–7781 (1986).

    Article  CAS  Google Scholar 

  10. Halvorsen, Y.-D.C., Nandabalan, K. & Dickson, R.C. LAC9 DNA-binding domain coordinates two zinc atoms per monomer and contacts DNA as a dimer. J. biol. Chem. 265, 13283–13289 (1990).

    CAS  PubMed  Google Scholar 

  11. Pan, T., Halvorsen, Y.-D., Dickson, R.C. & Coleman, J.E. The transcription factor LAC9 from Kluyveromyces lactis-like GAL4 from Saccharomyces cerevisiae forms a Zn(II)2Cys6 binuclear cluster. J. biol. Chem. 265, 21427 (1990).

    CAS  PubMed  Google Scholar 

  12. Gardner, K.H. & Coleman, J.E. 113Cd-1H heteroTOCSY: a method for determining metal-protein connectivities. J. biomol. NMR 4, 761–774 (1994).

    Article  CAS  Google Scholar 

  13. Rodgers, K.R. & Coleman, J.E. DNA binding and bending by the transcription factors GAL4(62*) and GAL4(149*). Prot. Sci. 3, 608–619 (1994).

    Article  CAS  Google Scholar 

  14. Mau, T., Baleja, J.D. & Wagner, G. Effects of DNA binding and metal substitution on the dynamics of the GAL4 DNA-binding domain as studied by amide proton exchange. Prot. Sci. 1, 1403–1412 (1992).

    Article  CAS  Google Scholar 

  15. Shirakawa, M. et al. Assignment of 1H, 15N, 13C resonances, identification of elements of secondary structure and determination of the global fold of the DNA-binding domain of GAL4. Biochemistry 32, 2144–2153 (1993).

    Article  CAS  Google Scholar 

  16. Wishart, D.S., Sykes, B.D. & Richards, F.M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31, 1647–1651 (1992).

    Article  CAS  Google Scholar 

  17. Frey, M.H. et al. Polypeptide-metal connectivities in metallothionein 2 by novel 1H-113Cd two-dimensional NMR experiments. J. Am. chem. Soc. 107, 6847–6851 (1985).

    Article  CAS  Google Scholar 

  18. Kellogg, G.W. & Schweitzer, B.I. Two- and three-dimensional 31P-driven NMR procedures for complete assignment of backbone resonances in oligodeoxyribonucleotides. J. Biomol. NMR 3, 577–595 (1993).

    Article  CAS  Google Scholar 

  19. Otting, G. & Wüthrich, K. Heteronuclear filters in two-dimensional [1H, 1H]-NMR spectroscopy: combined use with isotope labelling for studies of macromolecular conformation and intermolecular interactions. Quart. Rev. Biophys. 23, 39–96 (1990).

    Article  CAS  Google Scholar 

  20. Schwabe, J.W.R. & Klug, A. Zinc mining for protein domains. Nature struct. Biol. 1, 345–349 (1994).

    Article  CAS  Google Scholar 

  21. Blake, P.R. et al. Quantitative measurement of small through-hydrogen-bond and ‘through-space’ 1H-113Cd and 1H-199Hg J couplings in metal-substituted rubredoxin from Pyrococcus furiousus. J. biomol. NMR 2, 527–533 (1992).

    Article  CAS  Google Scholar 

  22. Pérez-Alvarado, G.C. et al. Structure of the carboxy-terminal LIM domain from the cysteine rich protein CRP. Nature struct. Biol. 1, 388–398 (1994).

    Article  Google Scholar 

  23. Brünger, A.T. XPLOR 3.1 Manual (Yale University Press, New Haven, 1992).

    Google Scholar 

  24. Presta, L.G. & Rose, G.D. Helix signals in proteins. Science 240, 1632–1641 (1988).

    Article  CAS  Google Scholar 

  25. Zerbe, O., Pountney, D.L., von Philipsborn, W. & Vasák, M. Vicinal 113Cd, 1Hβ-cysteine coupling in Cd-substituted metalloproteins follows a Karplus-type dependence. J. Am. chem. Soc. 116, 377–378 (1994).

    Article  CAS  Google Scholar 

  26. Adman, E., Watenpaugh, K.D. & Jensen, L.H. NHS hydrogen bonds in Peptococcus aerogenes ferredoxin, Clostridium pasteurianum rubredoxin, and Chromatium high potential iron protein. Proc. natn. Acad. Sci. U.S.A. 72, 4854–4858 (1975).

    Article  CAS  Google Scholar 

  27. Basile, L.A. & Coleman, J.E. Optical activity associated with the sulfur to metal charge transfer bands of Zn and Cd GAL4. Prot. Sci. 1, 617–624 (1992).

    Article  CAS  Google Scholar 

  28. Halvorsen, Y.-D.C., Nandabalan, K. & Dickson, R.C. Identification of base and backbone contacts used for DNA sequence recognition and high-affinity binding by LAC9, a transcription activator containing a C6 zinc finger. Molec. cell. Biol. 11, 1777–1784 (1991).

    Article  CAS  Google Scholar 

  29. Wüthrich, K. NMR of proteins and nucleic acids (John Wiley & Sons, New York, 1986).

    Book  Google Scholar 

  30. Pan, T. & Coleman, J.E. The DNA binding domain of GAL4 forms a binuclear metal ion complex. Biochemistry 29, 3623–3629 (1990).

    Google Scholar 

  31. Schweitzer, B.I., Gardner, K.H. & Tucker-Kellogg, G. HeteroTOCSY-based experiments for measuring heteronuclear relaxation in nucleic acids and proteins. J. Biomol. NMR in the press.

  32. Marion, D. & Wüthrich, K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem. biophys. Res. Commun. 113, 967–974 (1983).

    Article  CAS  Google Scholar 

  33. Macura, S., Huang, Y., Suter, D. & Ernst, R.R. Two-dimensional chemical exchange and cross-relaxation spectroscopy of coupled nuclear spins. J. magn. Reson 43, 259–281 (1981).

    CAS  Google Scholar 

  34. Brown, S.C., Weber, P.L. & Mueller, L. Toward complete 1H NMR spectra in proteins. J. magn. Reson. 77, 166–169 (1988).

    CAS  Google Scholar 

  35. Cavanagh, J. & Rance, M. Sensitivity improvement in isotropic mixing (TOCSY) experiments. J. magn. Reson. 88, 72–85 (1990).

    CAS  Google Scholar 

  36. Shaka, A.J., Lee, C.J. & Pines, A. Iterative schemes for bilinear operators; applications to spin decoupling. J. magn. Reson. 77, 274–293 (1988).

    Google Scholar 

  37. Derome, A.E. & Williamson, M.P. Rapid-pulsing artifacts in double-quantum-filtered COSY. J. magn. Reson. 88, 177–185 (1990).

    Google Scholar 

  38. Mueller, L. PE-COSY, A Simple Alternative to E-COSY. J. magn. Reson. 72, 191–196 (1987).

    CAS  Google Scholar 

  39. Kim, Y. & Prestegard, J.H. Measurement of vicinal couplings from cross peaks in COSY spectra. J. magn. Reson. 84, 9–13 (1989).

    CAS  Google Scholar 

  40. Manoleras, N. & Norton, R.S. Spectral processing methods for the removal of t1 noise and solvent artifacts from NMR spectra. j. Biomol. NMR 2, 485–494 (1992).

    Article  CAS  Google Scholar 

  41. Nilges, M., Clore, G.M. & Gronenborn, A.M. 1H-NMR stereospecific assignments by conformational data-base searches. Biopolymers 29, 813–822 (1990).

    Article  CAS  Google Scholar 

  42. Wüthrich, K., Billeter, M. & Braun, W. Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J. molec. Biol. 169, 949–961 (1983).

    Article  Google Scholar 

  43. Clore, G.M., Gronenborn, A.M., Nilges, M. & Ryan, C.A. Three-dimensional structure of potato carboxypeptidase inhibitor in solution. A study using nuclear magnetic resonance, distance geometry, and restrained molecular dynamics. Biochemistry 26, 8012–8023 (1987).

    Article  CAS  Google Scholar 

  44. Kraulis, P.J. MOLSCRIPT: A Program To Produce Both Detailed and Schematic Plots of Protein Structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  45. Bacon, D.J. & Anderson, W.F. A Fast Algorithm for Rendering Space-Filling Molecule Pictures. J. molec. Graphics 6, 219–220 (1988).

    Article  Google Scholar 

  46. Merritt, E.A. & Murphy, M.E.P., Raster3D Version 2.0 - A Program for Photorealistic Molecular Graphics. Acta. crystallogr. D50, 869–873 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardner, K., Anderson, S. & Coleman, J. Solution structure of the Kluyveromyces lactis LAC9 Cd2Cys6 DNA-binding domain. Nat Struct Mol Biol 2, 898–905 (1995). https://doi.org/10.1038/nsb1095-898

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1095-898

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing