Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prediction of new serine proteinase inhibitors

Abstract

We describe here the use of a rapid computational method to predict the relative binding strengths of a series of small-molecule ligands for the serine proteinase trypsin. Flexible molecular models of the ligands were docked to the proteinase using an all-atom potential set, without cutoff limits for the non-bonded and electrostatic energies. The binding-strength calculation is done directly in terms of a molecular mechanics potential. The binding of eighteen different compounds, including non-binding controls, has been successfully predicted. The measured Ki is correlated with the predicted energy. The correctness of the theoretical calculations is demonstrated with both kinetics measurements and X-ray structure determination of six enzyme-inhibitor complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Troll, W. & Kennedy, A.R. Proteinase inhibitors as cancer chemopreventive agents. (Plenum Press, NY, 1993)

    Book  Google Scholar 

  2. Bode, W. & Huber, R. Natural protein proteinase inhibitors and their interaction with proteinases. Eur.J.Biochem 204, 433–452 (1992).

    Article  CAS  Google Scholar 

  3. Gettins, P. & Patson, P.A. Structure and mechanism of action of serpins. Hemat. Oncol. Clinics N.America 6, 1393–1408 (1992).

    Article  CAS  Google Scholar 

  4. Straatsma, T.P. & McCammon, J.A. Theoretical Calculations of Relative Affinities of Binding. Meth. Enzymol 202, 497–511 (1991).

    Article  CAS  Google Scholar 

  5. Kuntz, I.D. Structure-based strategies for drug design and discovery. Science 257, 1078–1082 (1992). Shoichet, B.K. & Kuntz, I.D. Matching chemistry and shape in molecular docking. 6, 723–732 (1993).

    Article  CAS  Google Scholar 

  6. Goodford, P.J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J.med.Chem., 28, 849–857 (1985).

    Article  CAS  Google Scholar 

  7. Martin, Y. 3D Database searching in drug design J. med. Chem. 35, 2145–2155 (1992).

    Article  CAS  Google Scholar 

  8. Harrison, R.W. Stiffness and energy conservation in molecular dynamics. J.comp.Chem., 14, 1112–1122 (1993).

    Article  CAS  Google Scholar 

  9. Schreiber, H. & Steinhauser, O. Cutoff Size Does Strongly Influence Molecular Dynamics Results Solvated Polypeptides. Biochemistry 31, 5856–5860 (1992).

    Article  CAS  Google Scholar 

  10. Harrison, R.W., Kurinov, I.V. & Andrews, L.C. The Fourier-Green's function and the rapid evaluation of molecular potentials. Prot. Engng., 7, 359–369 (1994).

    Article  CAS  Google Scholar 

  11. Bernstein, F.C. et al. The protein data bank: a computer-based archival file for macromolecular structures. J. molec. Biol., 112 535–542 (1977).

    Article  CAS  Google Scholar 

  12. Marquart, M., Walter, J., Deisenhofer, J., Bode, W. & Huber, R. The geometry of the reactive site and the peptide groups in trypsin, trypsinogen and its complexes with inhibitors. Acta crystallogr. B39 480 (1983).

    Article  CAS  Google Scholar 

  13. Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A. III Skiff, W.M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. chem. Soc., 114, 10024–10046 (1992).

    Article  CAS  Google Scholar 

  14. Rappe, A.K. & Goddard, W.A., III Charge equilibrium for molecular dynamics simulations. J. Phys. Chem., 95, 3358–3363 (1991).

    Article  CAS  Google Scholar 

  15. Brunger, A.T. X-PLOR (version 3.0) Manual (1992).

    Google Scholar 

  16. Weiner, S.J., Kollman, P.A., Nguyen, D.T. & Case, D.A. (1986) An All Atom Force Field for Simulations of Proteins and Nucleic Acids. J. Comp Chem. 7, 230–252.

    Article  CAS  Google Scholar 

  17. Hermans, J., Berendsen, H.J.C., Van Gunsteren, W.F. & Postma, J.P.M. A Consistent Empirical Potential for Water-Protein Interactions. Biopolymers 23, 1513–1518 (1984).

    Article  CAS  Google Scholar 

  18. Nose, S. A unified formulation of the constant temperature molecular dynamics methods. J. chem.Phys. 84: 511–519 (1984).

    Article  Google Scholar 

  19. Chambers, J.L. & Stroud, R.M. The accuracy of refined protein structures, comparison of two independently refined models of bovine trypsin. Acta crystallogr. B35 1861– (1979) .

    Article  CAS  Google Scholar 

  20. Jones, T.A. A Graphics Model Building and Refinement System for Macromolecules J. Appl. Crystallogr. 11: 268–272 (1978).

    Article  CAS  Google Scholar 

  21. Mikes, O., Holeysovsky, V., Tomasek, V. & Sorm, F. Biochem, Biophys Res. Commun. 24 346–352 (1986).

    Article  Google Scholar 

  22. Feynman, R.P. Statistical Mechanics Addison Wesley Frontiers in Physics p66–71 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurinov, I., Harrison, R. Prediction of new serine proteinase inhibitors. Nat Struct Mol Biol 1, 735–743 (1994). https://doi.org/10.1038/nsb1094-735

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1094-735

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing