Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bistable regulation of integrin adhesiveness by a bipolar metal ion cluster

Abstract

Integrin α4β7 mediates rolling adhesion in Ca2+ and Ca2+ + Mg2+, and firm adhesion in Mg2+ and Mn2+, mimicking the two key steps in leukocyte accumulation in inflamed vasculature. We mutated an interlinked linear array of three divalent cation-binding sites present in integrin β-subunit I-like domains. The middle, metal ion–dependent adhesion site (MIDAS) is required for both rolling and firm adhesion. One polar site, that adjacent to MIDAS (ADMIDAS), is required for rolling because its mutation results in firm adhesion. The other polar site, the ligand-induced metal binding site (LIMBS), is required for firm adhesion because its mutation results in rolling. The LIMBS mediates the positive regulatory effects of low Ca2+ concentrations, whereas the ADMIDAS mediates the negative regulatory effects of higher Ca2+ concentrations, which are competed by Mn2+. The bipolar sites thus stabilize two alternative phases of adhesion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The β-subunit I-like domain metal-binding sites and regulation of α4β7 adhesive modality by divalent cations.
Figure 2: Effect of the metal ion–binding site mutations on the adhesive modality of α4β7 and resistance to detachment in shear flow.
Figure 3: Resistance to detachment.
Figure 4: Positive and negative regulation of α4β7 by Ca2+ and competition between Ca2+ and Mn2+.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Shimaoka, M., Takagi, J. & Springer, T.A. Conformational regulation of integrin structure and function. Annu. Rev. Biophys. Biomol. Struct. 31, 485–516 (2002).

    Article  CAS  Google Scholar 

  2. Emsley, J., Knight, C.G., Farndale, R.W., Barnes, M.J. & Liddington, R.C. Structural basis of collagen recognition by integrin α2β1. Cell 101, 47–56 (2000).

    Article  CAS  Google Scholar 

  3. Beglova, N., Blacklow, S.C., Takagi, J. & Springer, T.A. Cysteine-rich module structure reveals a fulcrum for integrin rearrangement upon activation. Nat. Struct. Biol. 9, 282–287 (2002).

    Article  CAS  Google Scholar 

  4. Shimaoka, M. et al. Structures of the αL I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112, 99–111 (2003).

    Article  CAS  Google Scholar 

  5. Takagi, J., Petre, B.M., Walz, T. & Springer, T.A. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110, 599–611 (2002).

    Article  CAS  Google Scholar 

  6. Takagi, J., Strokovich, K., Springer, T.A. & Walz, T. Structure of integrin α5β1 in complex with fibronectin. EMBO J. 22, 4607–4615 (2003).

    Article  CAS  Google Scholar 

  7. Xiong, J.-P. et al. Crystal structure of the extracellular segment of integrin αVβ3. Science 294, 339–345 (2001).

    Article  CAS  Google Scholar 

  8. Xiong, J.P. et al. Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science 296, 151–155 (2002).

    Article  CAS  Google Scholar 

  9. Marlin, S.D. & Springer, T.A. Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell 51, 813–819 (1987).

    Article  CAS  Google Scholar 

  10. Gailit, J. & Ruoslahti, E. Regulation of the fibronectin receptor affinity by divalent cations. J. Biol. Chem. 263, 12927–12932 (1988).

    CAS  PubMed  Google Scholar 

  11. Dransfield, I., Cabañas, C., Craig, A. & Hogg, N. Divalent cation regulation of the function of the leukocyte integrin LFA-1. J. Cell Biol. 116, 219–226 (1992).

    Article  CAS  Google Scholar 

  12. Staatz, W.D., Rajpara, S.M., Wayner, E.A., Carter, W.G. & Santoro, S.A. The membrane glycoprotein Ia-IIa (VLA-2) complex mediates the Mg++-dependent adhesion of platelets to collagen. J. Cell Biol. 108, 1917–1924 (1989).

    Article  CAS  Google Scholar 

  13. Mould, A.P., Akiyama, S.K. & Humphries, M.J. Regulation of integrin α5β1-fibronectin interactions by divalent cations. J. Biol. Chem. 270, 26270–26277 (1995).

    Article  CAS  Google Scholar 

  14. Hu, D.D., Hoyer, J.R. & Smith, J.W. Ca2+ suppresses cell adhesion to osteopontin by attenuating binding affinity for integrin αvβ3. J. Biol. Chem. 270, 9917–9925 (1995).

    Article  CAS  Google Scholar 

  15. Leitinger, B., McDowall, A., Stanley, P. & Hogg, N. The regulation of integrin function by Ca2+. Biochim. Biophys. Acta 1498, 91–98 (2000).

    Article  CAS  Google Scholar 

  16. Berlin, C. et al. α4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell 80, 413–422 (1995).

    Article  CAS  Google Scholar 

  17. Alon, R. et al. The integrin VLA-4 supports tethering and rolling in flow on VCAM-1. J. Cell Biol. 128, 1243–1253 (1995).

    Article  CAS  Google Scholar 

  18. de Chateau, M., Chen, S., Salas, A. & Springer, T.A. Kinetic and mechanical basis of rolling through an integrin and novel Ca2+-dependent rolling and Mg2+-dependent firm adhesion modalities for the α4β7–MAdCAM-1 interaction. Biochemistry 40, 13972–13979 (2001).

    Article  CAS  Google Scholar 

  19. Springer, T.A. Predicted and experimental structures of integrins and β-propellers. Curr. Opin. Struct. Biol. 12, 802–813 (2002).

    Article  CAS  Google Scholar 

  20. Pujades, C. et al. Defining extracellular integrin α chain sites that affect cell adhesion and adhesion strengthening without altering soluble ligand binding. Mol. Biol. Cell 8, 2647–2657 (1997).

    Article  CAS  Google Scholar 

  21. Knorr, R. & Dustin, M.L. The lymphocyte function-associated antigen 1 I domain is a transient binding module for intercellular adhesion molecule (ICAM)-1 and ICAM-1 in hydrodynamic flow. J. Exp. Med. 186, 719–730 (1997).

    Article  CAS  Google Scholar 

  22. Lu, C., Shimaoka, M., Zang, Q., Takagi, J. & Springer, T.A. Locking in alternate conformations of the integrin αLβ2 I domain with disulfide bonds reveals functional relationships among integrin domains. Proc. Natl. Acad. Sci. USA 98, 2393–2398 (2001).

    Article  CAS  Google Scholar 

  23. Salas, A., Shimaoka, M., Chen, S., Carman, C.V. & Springer, T.A. Transition from rolling to firm adhesion is regulated by the conformation of the I domain of the integrin LFA-1. J. Biol. Chem. 277, 50255–50262 (2002).

    Article  CAS  Google Scholar 

  24. Berlin, C. et al. α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74, 185–195 (1993).

    CAS  Google Scholar 

  25. Bargatze, R.F., Jutila, M.A. & Butcher, E.C. Distinct roles of L-selectin and integrins α4β7 and LFA-1 in lymphocyte homing to Peyer's patch-HEV in situ: the multistep model confirmed and refined. Immunity 3, 99–108 (1995).

    Article  CAS  Google Scholar 

  26. Briskin, M.J., McEvoy, L.M. & Butcher, E.C. MAdCAM-1 has homology to immunoglobulin and mucin-like adhesion receptors and to IgA1. Nature 363, 461–464 (1993).

    Article  CAS  Google Scholar 

  27. Chang, K.-C., Tees, D.F. & Hammer, D.A. The state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion. Proc. Natl. Acad. Sci. USA 97, 11262–11267 (2000).

    Article  CAS  Google Scholar 

  28. Harding, M.M. Geometry of metal-ligand interactions in proteins. Acta Crystallogr. D 57, 401–411 (2001).

    Article  CAS  Google Scholar 

  29. Tidswell, M. et al. Structure-function analysis of the integrin β7 subunit: Identification of domains involved in adhesion to MAdCAM-1. J. Immunol. 159, 1497–1505 (1997).

    CAS  PubMed  Google Scholar 

  30. Lu, C. & Springer, T.A. The α subunit cytoplasmic domain regulates the assembly and adhesiveness of integrin lymphocyte function-associated antigen-1 (LFA-1). J. Immunol. 159, 268–278 (1997).

    CAS  PubMed  Google Scholar 

  31. Lu, C., Oxvig, C. & Springer, T.A. The structure of the β-propeller domain and C-terminal region of the integrin αM subunit. J. Biol. Chem. 273, 15138–15147 (1998).

    Article  CAS  Google Scholar 

  32. Kassner, P.D. & Hemler, M.E. Interchangeable α chain cytoplasmic domains play a positive role in control of cell adhesion mediated by VLA-4, a β1 integrin. J. Exp. Med. 178, 649–660 (1993).

    Article  CAS  Google Scholar 

  33. Lazarovits, A.I. et al. Lymphocyte activation antigens: I. A monoclonal antibody, anti-act I, defines a new late lymphocyte activation antigen. J. Immunol. 133, 1857–1862 (1984).

    CAS  PubMed  Google Scholar 

  34. Schweighoffer, T. et al. Selective expression of integrin α4β7 on a subset of human CD4+ memory T cells with hallmarks of gut-trophism. J. Immunol. 151, 717–729 (1993).

    CAS  PubMed  Google Scholar 

  35. Lawrence, M.B. & Springer, T.A. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65, 859–873 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D.J. Erle and M.J. Briskin for providing wild-type human integrin β7 cDNA and α4β7 K562 stable transfectant and human MAdCAM-1/Fc, respectively. This work was supported by a grant from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy A Springer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Salas, A. & Springer, T. Bistable regulation of integrin adhesiveness by a bipolar metal ion cluster. Nat Struct Mol Biol 10, 995–1001 (2003). https://doi.org/10.1038/nsb1011

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1011

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing