Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interaction of coxsackievirus B3 with the full length coxsackievirus-adenovirus receptor

Abstract

Group B coxsackieviruses (CVB) utilize the coxsackievirus-adenovirus receptor (CAR) to recognize host cells. CAR is a membrane protein with two Ig-like extracellular domains (D1 and D2), a transmembrane domain and a cytoplasmic domain. The three-dimensional structure of coxsackievirus B3 (CVB3) in complex with full length human CAR and also with the D1D2 fragment of CAR were determined to 22 Å resolution using cryo-electron microscopy (cryo-EM). Pairs of transmembrane domains of CAR associate with each other in a detergent cloud that mimics a cellular plasma membrane. This is the first view of a virus–receptor interaction at this resolution that includes the transmembrane and cytoplasmic portion of the receptor. CAR binds with the distal end of domain D1 in the canyon of CVB3, similar to how other receptor molecules bind to entero- and rhinoviruses. The previously described interface of CAR with the adenovirus knob protein utilizes a side surface of D1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stereo views of CAR bound to CVB3.
Figure 2: Orthogonal stereo views of the Cα backbone of CAR D1 and D2 (black) fit into the cryo-EM density.
Figure 3: Stereo diagrams of the ICAM-1, PVR and CAR D1 domains.
Figure 4: Footprint of domain D1 onto the CVB3 surface (left) and footprint of CVB3 onto CAR (right).

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Rueckert, R.R. In Fields virology (eds Fields, B.N., D.M. Knipe & P.M. Howley) 609–654 (Lippincott-Raven Press, Philadelphia & New York; 1996).

    Google Scholar 

  2. Melnick, J.L. In Fields virology (eds Fields, B.N., D.M. Knipe & P.M. Howley) 655–712 (Lippincott-Raven Publishers, Philadelphia & New York; 1996).

    Google Scholar 

  3. Muckelbauer, J.K. et al. Structure 3, 653–668 (1995).

    Article  CAS  Google Scholar 

  4. Lonberg-Holm, K., Crowell, R.L. & Philipson, L. Nature 259, 679–681 (1976).

    Article  CAS  Google Scholar 

  5. Bergelson, J.M. et al. Science 275, 1320–1323 (1997).

    Article  CAS  Google Scholar 

  6. Wang, X. & Bergelson, J.M. J. Virol. 73, 2559–2562 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Martino, T.A. et al. Virology 271, 99–108 (2000).

    Article  CAS  Google Scholar 

  8. Rossmann, M.G. et al. Nature 317, 145–153 (1985).

    Article  CAS  Google Scholar 

  9. Kolatkar, P.R. et al. EMBO J. 18, 6249–6259 (1999).

    Article  CAS  Google Scholar 

  10. Olson, N.H. et al. Proc. Natl. Acad. Sci. USA 90, 507–511 (1993).

    Article  CAS  Google Scholar 

  11. He, Y. et al. Proc. Natl. Acad. Sci. USA 97, 79–84 (2000).

    Article  CAS  Google Scholar 

  12. Belnap, D.M. et al. Proc. Natl. Acad. Sci. USA 97, 73–78 (2000).

    Article  CAS  Google Scholar 

  13. Xing, L. et al. EMBO J. 19, 1207–1216 (2000).

    Article  CAS  Google Scholar 

  14. Xiao, C. et al. J. Virol. 75, 2444–2451 (2001).

    Article  CAS  Google Scholar 

  15. Rossmann, M.G. Protein Sci. 3, 1712–1725 (1994).

    Article  CAS  Google Scholar 

  16. Oliveira, M.A. et al. Structure 1, 51–68 (1993).

    Article  CAS  Google Scholar 

  17. Smith, T.J., Chase, E.S., Schmidt, T.J., Olson, N.H. & Baker, T.S. Nature 383, 350–354 (1996).

    Article  CAS  Google Scholar 

  18. Tomko, R.P., Xu, R. & Philipson, L. Proc. Natl. Acad. Sci. USA 94, 3352–3356 (1997).

    Article  CAS  Google Scholar 

  19. Nemerow, G.R. Virology 274, 1–4 (2000).

    Article  CAS  Google Scholar 

  20. Bai, M., Harfe, B. & Freimuth, P. J. Virol. 67, 5198–5205 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bewley, M., Springer, K., Zhang, Y.B., Freimuth, P. & Flanagan, J.M. Science 286, 1579–1583 (1999).

    Article  CAS  Google Scholar 

  22. Knowlton, K.U., Jeon, E.S., Berkley, N., Wessely, R. & Huber, S. J. Virol. 70, 7811–7818 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bergelson, J.M. et al. J. Virol. 72, 415–419 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. van Raaij, M.J., Chouin, E., van der Zandt, H., Bergelson, J.M. & Cusack, S. Structure 8, 1147–1155 (2000).

    Article  CAS  Google Scholar 

  25. Gauntt, C.J., Trousdale, M.D., LaBadie, D.R., Paque, R.E. & Nealon, T. J. Med. Virol. 3, 207–220 (1979).

    Article  CAS  Google Scholar 

  26. Mayr, G.A. & Freimuth, P. J. Virol. 71, 412–418 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Freimuth, P. et al. J. Virol. 73, 1392–1398 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Robison, C.S. & Whitt, M.A. J. Virol. 74, 2239–2246 (2000).

    Article  CAS  Google Scholar 

  29. Baker, T.S., Olson, N.H. & Fuller, S.D. Microbiol. Mol. Biol. Rev. 63, 862–922 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Baker, T.S. & Cheng, R.H. J. Struct. Biol. 116, 120–130 (1996).

    Article  CAS  Google Scholar 

  31. Freigang, J. et al. Cell 101, 425–433 (2000).

    Article  CAS  Google Scholar 

  32. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  33. Rossmann, M.G. Acta Crystallogr. D 56, 1341–1349 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. DeGregori at the University of Colorado Cancer Center for the hybridoma cells that we initially used to produce CAR. We thank the BNL genome sequencing group, especially B. Lade, L. Butler, K. Pellechi, J. Kieleczawa and J. Dunn, for sequence analysis of the BAC containing the CAR gene. DNA sequencing was supported in part by the Office of Biological and Environmental Research of the U.S. Department of Energy. We also thank C. Xiao, W. Zhang, S. Mukhopadhyay, B. Hébert and J. Henderson for helpful discussions, C. Towell and S. Wilder for help in preparation of the manuscript, and K. Springer for purification of the CAR D1D2 protein fragment. This work was supported by NIH grants to M.G.R., R.J.K., P.F., M.A.W. and T.S.B., and grants from the Keck Foundation and Purdue University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Rossmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Chipman, P., Howitt, J. et al. Interaction of coxsackievirus B3 with the full length coxsackievirus-adenovirus receptor. Nat Struct Mol Biol 8, 874–878 (2001). https://doi.org/10.1038/nsb1001-874

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1001-874

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing