Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

X-ray crystal structure of IRF-3 and its functional implications

Abstract

Transcription factor IRF-3 is post-translationally activated by Toll-like receptor (TLR) signaling and has critical roles in the regulation of innate immunity. Here we present the X-ray crystal structure of the C-terminal regulatory domain of IRF-3(175–427) (IRF-3 175C) at a resolution of 2.3 Å. IRF-3 175C is structurally similar to the Mad homology domain 2 of the Smad family. Structural and functional analyses reveal phosphorylation-induced IRF-3 dimerization, which generates an extensive acidic pocket responsible for binding with p300/CBP. Although TLR and Smad signaling are evolutionarily independent, our results suggest that IRF-3 originates from Smad and acquires its function downstream of TLR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain structure of IRF-3 and sequence alignment and characterization of IRF-3 175C.
Figure 2: Overall structure of IRF-3 and its structural similarity to Smad2.
Figure 3: The dimer interface of IRF-3.
Figure 4: Phosphorylation of the 2S site and the dimerization of IRF-3 by TBK-1.
Figure 5: Acidic surface of IRF-3.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kawai, T. et al. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J. Immunol. 167, 5887–5894 (2001).

    Article  CAS  Google Scholar 

  2. Doyle, S. et al. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17, 251–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Kaisho, T. & Akira, S. Dendritic-cell function in Toll-like receptor- and MyD88-knockout mice. Trends Immunol. 22, 78–83 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Mamane, Y. et al. Interferon regulatory factors: the next generation. Gene 237, 1–14 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Taniguchi, T., Ogasawara, K., Takaoka, A. & Tanaka, N. IRF family of transcription factors as regulators of host defense. Annu. Rev. Immunol. 19, 623–655 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  Google Scholar 

  7. Yoneyama, M., Suhara, W. & Fujita, T. Control of IRF-3 activation by phosphorylation. J. Interferon Cytokine Res. 22, 73–76 (2002).

    Article  CAS  Google Scholar 

  8. Sato, M. et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction. Immunity 13, 539–548 (2000).

    Article  CAS  Google Scholar 

  9. Yoneyama, M. et al. Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J. 17, 1087–1095 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Iwamura, T. et al. Induction of IRF-3/-7 kinase and NF-κB in response to double-stranded RNA and virus infection: common and unique pathways. Genes Cells 6, 375–388 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Marie, I., Durbin, J.E. & Levy, D.E. Differential viral induction of distinct interferon-α genes by positive feedback through interferon regulatory factor-7. EMBO J. 17, 6660–6669 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Lin, R., Mamane, Y. & Hiscott, J. Structural and functional analysis of interferon regulatory factor 3: localization of the transactivation and autoinhibitory domains. Mol. Cell. Biol. 19, 2465–2474 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Wu, J. et al. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-β signaling. Mol. Cell 8, 1277–1289 (2001).

    Article  CAS  Google Scholar 

  15. Shi, Y., Hata, A., Lo, R.S. & Massague, J. & Pavletich, N.P. A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature 388, 87–93 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Qin, B., Lam, S.S. & Lin, K. Crystal structure of a transcriptionally active Smad4 fragment. Structure Fold. Des. 7, 1493–1503 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Suhara, W. et al. Analyses of virus-induced homomeric and heteromeric protein associations between IRF-3 and coactivator CBP/p300. J. Biochem. 128, 301–307 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Onishi, M. et al. Identification and characterization of a constitutively active STAT5 mutant that promotes cell proliferation. Mol. Cell. Biol. 18, 3871–3879 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Yang, H. et al. Transcriptional activity of interferon regulatory factor (IRF)-3 depends on multiple protein-protein interactions. Eur. J. Biochem. 269, 6142–6151 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148–1151 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Fitzgerald, K.A. et al. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491–496 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Lin, C.H. et al. A small domain of CBP/p300 binds diverse proteins: solution structure and functional studies. Mol. Cell 8, 581–590 (2001).

    Article  CAS  Google Scholar 

  23. Demarest, S.J. et al. Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature 415, 549–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Qin, B. et al. Crystal structure of IRF-3 transactivation domain: autoinhibition and virus-induced phospho-activation. Nat. Struct. Biol. advance online publication, 12 October 2003 (doi: 10.1038/nsb1002).

  25. Eroshkin, A. & Mushegian, A. Conserved transactivation domain shared by interferon regulatory factors and Smad morphogens. J. Mol. Med. 77, 403–405 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Durocher, D. et al. The molecular basis of FHA domain:phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. Mol. Cell 6, 1169–1182 (2000)

    Article  CAS  Google Scholar 

  27. Yasukawa, T. et al. Increase of solubility of foreign proteins in Escherichia coli by coproduction of the bacterial thioredoxin. J. Biol. Chem. 270, 25328–25331 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Leslie, A.G.W. Mosflm User Guide, Mosflm Version 6.0 (MRC Laboratory of Molecular Biology, Cambridge, UK, 1999).

    Google Scholar 

  29. Collaborative Computing Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  30. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  31. Brnnger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1991).

    Article  Google Scholar 

  32. Roussel, A. & Cambillau, C. TURBO-FRODO Manual (AFMB-CNRS, Marseille, France, 1996).

    Google Scholar 

  33. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  34. Merritt, E.A. & Bacon, J.A. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Jones, T.A., Zhou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  36. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant-in-aids for CREST of Japan Science and Technology, Scientific Research on Priority Areas and National Project on Protein Structural and Functional Analyses from the Ministry of Education, Culture, Sports, Science and Technology, Japan to F.I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyuhiko Inagaki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahasi, K., Suzuki, N., Horiuchi, M. et al. X-ray crystal structure of IRF-3 and its functional implications. Nat Struct Mol Biol 10, 922–927 (2003). https://doi.org/10.1038/nsb1001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1001

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing