Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Functional defects of pathogenic human mitochondrial tRNAs related to structural fragility

Abstract

Aminoacylation of transfer RNAs (tRNAs) is essential for protein synthesis. A growing number of human diseases correlate with point mutations in tRNA genes within the mitochondrial genome. These tRNAs have unique sequences that suggest they have fragile structures. However, the structural significance of pathology-related tRNA mutations and their effects on molecular function have not been explored. Here, opthalmoplegia related mutants of a human mitochondrial tRNA have been investigated. Each mutation replaces either an A-U or G-C pair in the predicted secondary structure with an A-C pair. Aminoacylation of each mutant tRNA was severely attenuated. Moreover, each strongly inhibited aminoacylation of the wild type substrate, suggesting that the effects of these mutations might not be bypassed in the potentially heteroplasmic environment of mitochondria. The function of mutant tRNAs was rescued by single compensatory mutations that restored Watson-Crick base pairing and reintroduced stability into regions of predicted secondary structure, even though the pairs introduced were different from those found in the wild type tRNA. Thus, functional defects caused by a subset of pathogenic mutations may result from the inherent structural fragility of human mitochondrial tRNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cloverleaf secondary structure of human mitochondrial tRNAIle as predicted by MFOLD23.
Figure 2: Aminoacylation at pH 7.5, 37 °C of human mitochondrial tRNAIle transcripts containing pathogenic mutations.
Figure 3: Functional rescue of tRNAIle mutants by incorporation of compensatory mutations restoring base pairing.

Similar content being viewed by others

References

  1. Schon, E.A., Bonilla, E. & DiMauro, S. J. Bioenerg. Biomem. 29, 131–149 (1997).

    Article  CAS  Google Scholar 

  2. Michikawa, Y., Mazzucchelli, F., Bresolin, N., Scarlato, G. & Attardi, G. Science 286, 774–779 (1999).

    Article  CAS  Google Scholar 

  3. Bonilla, E. et al. Biochim. Biophys. Acta. 1410, 171–182 (1999).

    Article  CAS  Google Scholar 

  4. Cortopassi, G.A. & Wong, A. Biochim. Biophys. Acta. 1410, 183–193 (1999).

    Article  CAS  Google Scholar 

  5. MITOMAP: a human mitochondrial genome data base. Center for Molecular Medicine, Emory University, Atlanta, GA, USA. http://www.gen.emory.edu/mitomap.html (2000).

  6. King, M.P., Koga, Y., Davidson, M. & Schon, E.A. Mol. Cell. Biol. 12, 480–490 (1992).

    Article  CAS  Google Scholar 

  7. Enriquez, J.A., Chomyn, A. & Attardi, G. Nature Genet. 10, 47–55 (1995).

    Article  CAS  Google Scholar 

  8. Martin, N. In tRNA: Structure, biosynthesis and function (Söll, D. and RajBhandary, U.L.), 127–140 (American Society for Microbiology, Washington, DC; 1995).

    Book  Google Scholar 

  9. Steinberg, S., Leclerc, F. & Cedergren, R. J. Mol. Biol. 266, 269–282 (1997).

    Article  CAS  Google Scholar 

  10. Giege, R., Sissler, M. & Florentz, C. Nucleic Acids Res. 26, 5017–5035 (1998).

    Article  CAS  Google Scholar 

  11. Giege, R., Puglisi, J.D. & Florentz, C. Prog. Nucl. Acid Res. Mol. Biol. 45, 129–206 (1993).

    Article  CAS  Google Scholar 

  12. Chinnery, P.F., Johnson, M.A., Taylor, R.W., Durward, W.F. & Turnbull, D.M. Neurology 49, 1166–1168 (1997).

    Article  CAS  Google Scholar 

  13. Silvestri, G., et al. Biochem. Biophys. Res. Commun. 220, 623–627 (1996).

    Article  CAS  Google Scholar 

  14. Taylor, R.W., et al. Biochem. Biophys. Res. Commun. 243, 47–51 (1998).

    Article  CAS  Google Scholar 

  15. Taniike, M. et al. Biochem. Biophys. Res. Commun. 186, 47–53 (1992).

    Article  CAS  Google Scholar 

  16. Merante, F., Myint, T., Tein, I., Benson, L. & Robinson, B.H. Hum. Mutat. 8, 216–222 (1996).

    Article  CAS  Google Scholar 

  17. Casali, C. et al. Biochem. Biophys. Res. Commun. 213, 588–593 (1995).

    Article  CAS  Google Scholar 

  18. Tanaka, M., et al. Lancet 336, 1452 (1990).

    Article  CAS  Google Scholar 

  19. Santorelli, F.M., et al. Biochem. Biophys. Res. Commun. 216, 835–840 (1995).

    Article  CAS  Google Scholar 

  20. Maglott, E.J., Deo, S.S., Przykorska, A. & Glick, G.D. Biochemistry 37, 16349–16359 (1998).

    Article  CAS  Google Scholar 

  21. Nureki, O., et al. J. Mol. Biol. 236, 710–724 (1994).

    Article  CAS  Google Scholar 

  22. Degoul, F., et al. Hum. Mol. Genet. 7, 347–354 (1998).

    Article  CAS  Google Scholar 

  23. Zuker, M., Mathews, D. & Turner, D. In RNA biochemistry and biotechnology (eds, Barciszewski, J. & Clark, B.), 11–43 (Kluwer Academic Publishers, Norwell, Massachusetts; 1999).

    Book  Google Scholar 

  24. Takai, D., Isobe, K. & Hayashi, J. J. Biol. Chem. 274, 11199–11202 (1999).

    Article  CAS  Google Scholar 

  25. Enriquez, J.A., Cabezas-Herrera, J., Bayona-Bafaluy, M.P. & Attardi, G. J. Biol. Chem. 275, 11207–11215 (2000).

    Article  CAS  Google Scholar 

  26. Fechter, P., Rudinger, J., Giege, R. & Theobald-Dietrich, A. FEBS Lett. 436, 99–103 (1998).

    Article  CAS  Google Scholar 

  27. Shiba, K., et al. Proc. Natl. Acad. Sci. USA 91, 7435–7439 (1994).

    Article  CAS  Google Scholar 

  28. Schimmel, P., Soll, D. & Abelson, J. (eds.). Transfer RNA: structure, properties, and recognition, 519 (Cold Spring Harbor Laboratory, Cold Spring Habor, New York; 1979).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health and by a fellowship from the National Foundation for Cancer Research. S.O.K. was a NIH postdoctoral fellow. S.V.S. acknowledges an operating grant from Medical Research Council of Canada and a fellowship from le Fonds de la Recherche en Santé du Québec. We would like to acknowledge Cubist Pharmaceuticals and K. Shiba (Japanese Foundation for Cancer Research, Tokyo) for recombinant materials for the expression of human mitochondrial IleRS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shana O. Kelley or Paul Schimmel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelley, S., Steinberg, S. & Schimmel, P. Functional defects of pathogenic human mitochondrial tRNAs related to structural fragility. Nat Struct Mol Biol 7, 862–865 (2000). https://doi.org/10.1038/79612

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79612

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing