Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of human heme oxygenase-1

Abstract

Heme oxygenase catalyzes the first step in the oxidative degradation of heme. The crystal structure of heme oxygenase-1 (HO-1) reported here reveals a novel helical fold with the heme sandwiched between two helices. The proximal helix provides a heme iron ligand, His 25. Conserved glycines in the distal helix near the oxygen binding site allow close contact between the helix backbone and heme in addition to providing flexibility for substrate binding and product release. Regioselective oxygenation of the α-meso heme carbon is due primarily to steric influence of the distal helix.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: The overall structure of HO-1.
Figure 3: Solvent-accessible surfaces of HO-1 colored by electrostatic potential (negative is red, positive is blue).
Figure 4: The active site of HO-1.
Figure 5: Flexibility and alternate conformations of the two molecules in the asymmetric unit.
Figure 6: a, Plot of the r.m.s. deviation of backbone atoms between the two molecules in the asymmetric unit.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Tenhunen, R., Marver, H.S. & Schmid, R. Microsomal heme oxygenase. Characterization of the enzyme. J. Biol. Chem. 244, 6388–6394 (1969).

    CAS  PubMed  Google Scholar 

  2. Dore, S. et al. Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc. Natl. Acad. Sci. USA 96, 2445–2450 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Verma, A., Hirsch, D.J., Glatt, C.E., Ronnett, G.V. & Snyder, S.H. Carbon monoxide: a putative neural messenger. Science 259, 381–384 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Maines, M.D. The heme oxygenase system: a regulator of second messenger gases. Annu. Rev. Pharmacol. Toxicol. 37, 517–554 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Mueller, R.M., Taguchi, H. & Shibahara, S. Nucleotide sequence and organization of the rat heme oxygenase gene. J. Biol. Chem. 262, 6795–6802 (1987).

    CAS  Google Scholar 

  6. Yoshida, T., Biro, P., Cohen, T., Mueller, R.M. & Shibahara, S. Human heme oxygenase cDNA and induction of its mRNA by hemin. Eur. J. Biochem. 171, 457–461 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Yachie, A. et al. Oxidative stress causes enhanced endothelial injury in human heme oxygenase-1 deficiency. J. Clin. Invest. 103, 129–135 (1998).

    Article  Google Scholar 

  8. Poss, K.D. & Tonegawa, S. Heme oxygenase 1 is required for mammalian iron reutilization. Proc. Natl. Acad. Sci. USA 94, 10919–10924 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hancock, W.W., Buelow, R., Sayegh, M.H. & Turka, L.A. Antibody-induced transplant arteriosclerosis is prevented by graft expression of anti-oxidant and anti-apoptotic genes. Nat. Med. 4, 1392–1396 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Soares, M.P. et al. Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nat. Med. 4, 1073–1077 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Rotenberg, M.O. & Maines, M.D. Isolation, characterization, and expression in Escherichia coli of a cDNA encoding rat heme oxygenase-2. J. Biol. Chem. 265, 7501–7506 (1990).

    CAS  PubMed  Google Scholar 

  12. Zakhary, R. et al. Targeted gene deletion of heme oxygenase 2 reveals neural role for carbon monoxide. Proc. Natl. Acad. Sci. USA 94, 14848–14853 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhuo, M., Small, S.A., Kandel, E.R. & Hawkins, R.D. Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. Science 260, 1946–1950 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Schmitt, M.P. Utilization of host iron sources by Corynebacterium diphtheriae: identification of a gene whose product is homologous to eukaryotic heme oxygenases and is required for acquisition of iron from heme and hemoglobin. J. Bacteriol. 179, 838–845 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Muramoto, T., Kohchi, T., Yokota, A., Hwang, I. & Goodman, H.M. The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 11, 335–347 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cornejo, J., Willows, R.D. & Beale, S.I. Phytobilin biosynthesis: cloning and expression of a gene encoding soluble ferredoxin-dependent heme oxygenase in Synechocystis sp. PCC 6803. Plant J. 15, 99–107 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Yoshida, T. & Sato, M. Posttranslational and direct integration of heme oxygenase into microsomes. Biochem. Biophys. Res. Commun. 163, 1086–1092 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Ortiz de Montellano, P.R. Heme oxygenase mechanism: evidence for an electrophilic ferric peroxide species. Acc. Chem. Res. 31, 543–549 (1998).

    Article  CAS  Google Scholar 

  19. Takahashi, S. et al. Heme-heme oxygenase complex. Structure of the catalytic site and its implication for oxygen activation. J. Biol. Chem. 269, 1010–1014 (1994).

    CAS  PubMed  Google Scholar 

  20. Sun, J., Wilks, A., Ortiz de Montellano, P.R. & Loehr, T.M. Resonance Raman and EPR spectroscopic studies on heme-heme oxygenase complexes. Biochemistry 32, 14151–14157 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Sano, S., Sano, T., Morishima, I., Shiro, Y. & Maeda, Y. On the mechanism of the chemical and enzymatic oxygenation of α oxyprotohemin IX to Fe-biliverdin Xα. Proc. Natl. Acad. Sci. USA 83, 531–535 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Migita, C.T. et al. The oxygen and carbon monoxide reactions of heme oxygenase. J. Biol. Chem. 273, 945–949 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Yoshida, T., Ishikawa, K. & Sato, M. Degradation of heme by a soluble peptide of heme oxygenase obtained from rat liver microsomes by mild trypsinization. Eur. J. Biochem. 199, 729–733 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Ishikawa, K., Sato, M., Ito, M. & Yoshida, T. Importance of histidine residue 25 of rat heme oxygenase for its catalytic activity. Biochem. Biophys. Res. Commun. 182, 981–986 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Wilks, A., Black, S.M., Miller, W.L. & Ortiz de Montellano, P.R. Expression and characterization of truncated human heme oxygenase hHO-1 and a fusion protein of hHO-1 with human cytochrome P450 reductase. Biochemistry 34, 4421–4427 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Wilks, A., Medzihradszky, K.F. & Ortiz de Montellano, P.R. Heme oxygenase active-site residues identified by heme-protein cross-linking during reduction of CBrCl3. Biochemistry 37, 2889–2896 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Schuller, D.J., Wilks, A., Ortiz de Montellano, P.R. & Poulos, T.L. Crystallization of recombinant human heme oxygenase-1. Protein Sci. 7, 1836–1838 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Omata, Y., Asada, S., Sakamoto, H., Fukuyama, K. & Noguchi, M. Crystallization and preliminary X-ray diffraction studies on the water soluble form of rat heme oxygenase-1 in complex with heme. Acta Crystallogr. D 54 1017–1019 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, M. et al. Three-dimensional structure of NADPH-cytochrome P450 reductase: prototype for FMN- and FAD-containing enzymes. Proc. Natl. Acad. Sci. USA 94, 8411–8416 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sevrioukova, I.F., Li, H., Zhang, H., Peterson, J.A. & Poulos, T.L. Structure of a cytochrome P450-redox partner electron transfer complex. Proc. Natl. Acad. Sci. USA 96, 1863–1868 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wilks, A., Sun, J., Loehr, T.M. & Ortiz de Montellano, P.R. Heme oxygenase His25Ala mutant: replacement of the proximal histidine iron ligand by exogenous bases restores catalytic activity. J. Am. Chem. Soc. 117, 2925–2926 (1995).

    Article  CAS  Google Scholar 

  32. Frydman, R.B. et al. Specificity of heme oxygenase: a study with synthetic hemins. Biochemistry 20, 5177–5182 (1981).

    Article  CAS  PubMed  Google Scholar 

  33. Hernandez, G. et al. Proton NMR investigation of substrate-bound heme oxygenase: evidence for electronic and steric contributions to stereoselective heme cleavage. Biochemistry 33, 6631–6641 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Takahashi, S. et al. Heme-heme oxygenase complex: structure and properties of the ccatalytic site form resonance Raman scattering. Biochemistry 33, 5531–5538 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Collman, J.P. et al. O2 and CO binding to iron (II) porphyrins: a comparison of the "picket fence" and "pocket" porphyrins. J. Am. Chem. Soc. 105, 3052–3064 (1983).

    Article  CAS  Google Scholar 

  36. Traylor, T.G., Koga, N. & Dearduff, L.A. Structural differentiation of CO and O2 binding to iron porphyrins: polar pocket effects. J. Am. Chem. Soc. 107, 6504–6510 (1985).

    Article  CAS  Google Scholar 

  37. Lavalette, D., Tetreau, C., Mispelter, J., Momenteau, M. & Lhoste, J.-M. Linear free-energy relationships in binding of oxygen and carbon monoxide with heme model compounds and heme proteins. Eur. J. Biochem. 145, 555–565 (1984).

    Article  CAS  PubMed  Google Scholar 

  38. Springer, B.A., Sligar, S.G., Olson, J.S. & Phillips, G.N. Mechanisms of ligand recognition in myoglobin. Chem. Rev. 94, 669–714 (1994).

    Article  Google Scholar 

  39. Kachalova, G.S., Popov, A.N. & Bartunk, H.D. A steric mechanism for inhibition of CO binding to heme proteins. Science 284, 473–476 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Traylor, T.G., Koga, N., Dearduff, L.A., Sweptson, P.N. & Ibers, J.A. 1,3,-adamantane-3,13-porphyrin-6,6-cyclophane: crystal structure of the free base and steric effects on ligation of the iron (II) complex. J. Am. Chem. Soc. 106, 5132–5143 (1984).

    Article  CAS  Google Scholar 

  41. Ghosh, A. & Bocian, D.F. The carbonyl tilting and bending potential surface of carbon monoxyhemes. J. Phys. Chem. 100, 6363–6367 (1996).

    Article  CAS  Google Scholar 

  42. Sigfridsson, E. & Ryde, U. On the significance of hydrogen bonds for the discrimination between CO and O2 by myoglobin. J. Biol. Inorg. Chem. 4, 99–110 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Murakami, T. et al. Effects of the arrangement of a distal catalytic residue on regioselectivity and reactivity in the coupled oxidation of sperm whale myoglobin mutants. J. Am. Chem. Soc. 121, 2007–2011 (1999).

    Article  CAS  Google Scholar 

  44. Brown, S.B., Chabot, A.A., Enderby, E.A. & North, A.C.T. Orientation of oxygen in oxyhaemoproteins and its implications for haem catabolism. Nature 289, 93–95 (1981).

    Article  CAS  PubMed  Google Scholar 

  45. Noguchi, M., Yoshida, T. & Kikuchi, G. A stoichiometric study of heme degradation catalyzed by the reconstituted heme oxygenase system with special consideration of the production of hydrogen peroxide during the reaction. J. Biochem. 93, 1027–1036 (1983).

    Article  CAS  PubMed  Google Scholar 

  46. Rodríquez, J.C. & Rivera, M. Conversion of mitochondrial cytochrome b5 into a species capable of performing the efficient coupled oxidation of heme. Biochemistry 37, 13082–13090 (1998).

    Article  Google Scholar 

  47. Torpey, J. & Ortiz de Montellano, P.R. Oxidation of the meso-methylmesoheme regioisomers by heme oxygenase. J. Biol. Chem. 271, 26067–26073 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Torpey, J. & Ortiz de Montellano, P.R. Oxidation of α-meso-formylmesoheme by heme oxygenase. J. Biol. Chem. 272, 22008–22014 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Collaborative Computational Project, Number 4. CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  51. de La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction method. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, K.Y.J. & Main, P. The use of Sayre's equation with solvent flattening and histogram matching for phase extension and refinement of protein structures. Acta Crystallogr. A 46, 377–381 (1990).

    Article  Google Scholar 

  53. Schuller, D.J. MAGICSQUASH: More versatile non-crystallographic averaging with multiple constraints. Acta Crystallogr. D 52, 425–434 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Navaza, J. AMORE—an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  55. Jones, T.A. Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. Methods Enzymol. 115, 157–171 (1985).

    Article  CAS  PubMed  Google Scholar 

  56. Brünger, A.T. X-PLOR version 3.1: a system for X-ray crystallography and NMR (New Haven: Yale Univ. Press; 1992).

    Google Scholar 

  57. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Brünger, A.T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  59. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Evans, S.V. SETOR: hardware-lighted three dimensional solid model representation of macromolecules. J. Mol. Graphics 11, 134–138 (1993).

    Article  CAS  Google Scholar 

  61. Sharp, K., Fine, R. & Honig, B. Computer simulations of the diffusion of a substrate to an active site of an enzyme. Science 236, 1460–1463 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to S. Tajbaksh for help with protein purification, to J.P. Cartailler for help with the GRASP figures, to B. Bhaskar, W.N. Lanzilotta, H. Li, C.S. Raman, I. Sevrioukova and M. Sundaramoorthy for helpful discussions, and to A. J. Greenwood for computational assistance. This work was supported by grants from the National Institutes of Health (T.L.P. and P.R.O.d.M.) and the National Science Foundation (T.L.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L. Poulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuller, D., Wilks, A., Ortiz de Montellano, P. et al. Crystal structure of human heme oxygenase-1. Nat Struct Mol Biol 6, 860–867 (1999). https://doi.org/10.1038/12319

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12319

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing