Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure and mechanism of formation of the H-y5 isomer of an intramolecular DNA triple helix

Abstract

H-DNA, thought to play a regulatory role in transcription, exists in two isomeric forms, H-y3 and H-y5. We present the first solution structure of a DNA fragment representing the H-y5 fold. The structure shows the H-y5 triple helix, and for the first time how in an H-DNA isomer the purine strand extension interacts with the triplex loop. It gives direct insight into the mechanism of H-DNA formation, and explains a host of biochemical and biophysical data on the relative stability of the H-DNA isomers. In addition, the observed interaction of the purine strand extension and the triplex loop provides new clues to the design of clamp-type triple helix-forming oligonucleotides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the transition of a, the double helix into b, the two possible isomers of H-DNA.
Figure 2: a, b, Sequential NOE interactions in the triplex loop and the 3′ tail of H-y5 shown in expanded regions of the 80 ms 750 MHz NOESY spectrum.
Figure 3: The solution structure of the H-y5 DNA fragment.
Figure 4: a, Haasnoot plot30,31 for a triplex loop.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Collins et al. Science 282, 682–730 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  2. Frank-Kamenetskii, M.D. & Mirkin, S.M. Annu. Rev. Biochem. 64, 65–95 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  3. Htun, H. & Dahlberg, J.E. Science 241, 1791–1796 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Horwitz, E.M., Maloney, K.A. & Ley, T.J. J. Biol. Chem. 269, 14130– 14139 (1994).

    CAS  PubMed  Google Scholar 

  5. Bacolla, A., Ulrich, M.J., Larson, J.E., Ley, T.J. & Wells, R.D. J. Biol. Chem. 270, 24556–24563 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Helene, C., Giovannangeli, C., Guieyesse-Peugeot, A.L. & Raseuth, D. Ciba Found. Symp. 209, 94–102 (1997).

    CAS  PubMed  Google Scholar 

  7. Majumdar, A. et al. Nature Genet. 20, 212– 214 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Giovannangeli, C. et al. Proc. Natl. Acad. Sci. USA, 94, 79– 84 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Voloshin, O.N., Mirkin, S.M., Lyamichev, V.I., Belotserkovskii, B.P. & Frank-Kamenetskii, M.D. Nature 333, 475–476 ( 1988).

    Article  CAS  PubMed  Google Scholar 

  10. Booher, M.A., Wang, S. & Kool, E.T. Biochemistry 33, 4645– 4651 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Shimizu, M., Kubo, K., Matsumoto, U. & Shindo, H. J. Mol. Biol. 235, 185–197 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Wells, R.D., Wohlrab, F. & Kang, S. J. Biol. Chem. 267, 1259– 1264 (1992).

    PubMed  Google Scholar 

  13. Roberts, R.W. & Crothers, D.M. J. Mol. Biol. 260 , 135–146 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Macaya, R., Schultze, P. & Feigon, J. J. Am. Chem. Soc. 114, 781– 783 (1992).

    Article  CAS  Google Scholar 

  15. Macaya, R., Wang, E.D., Schultze, P., Sklenár, V. & Feigon, J. J. Mol. Biol. 225, 755– 773 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Radhakrishnan, I., Patel, D.J. & Gao, X. Biochemistry 31, 2514– 2523 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Radhakrishnan, I. & Patel, D.J. Structure 2, 17–32 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Radhakrishnan, I. & Patel, D.J. J. Mol. Biol. 241, 600–619 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, E., Koshlap, K.M., Gillespie, P., Dervan, P.B. & Feigon, J. J. Mol. Biol. 257, 1052–1069 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Tarkoy, M., Phipps, A.K., Schultze, P. & Feigon, J. Biochemistry 37, 5810–5819 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Phipps, A.K., Tarkoy, M., Schultze, P. & Feigon, J., Biochemistry 37, 5820–5830 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Blommers, M.J., Natt, F., Jahnke, W. & Cuenoud, B. Biochemistry 37, 17714–17725 (1996).

    Article  Google Scholar 

  23. Asensio, J.L., Brown, T. & Lane, A.N. Structure 7, 1– 11 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Van Dongen, M.J.P., Wijmenga, S.S., Van der Marel, G.A., Van Boom, J.H. & Hilbers, C.W. J. Mol. Biol. 263, 715–729 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Wijmenga, S.S., Mooren, M.M.W. & Hilbers, C.W. NMR of macromolecules: a practical approach (ed. Roberts, G.C.K.) 217–288 (Oxford University Press, New York,1993).

    Google Scholar 

  26. Wijmenga, S.S., Kruithof, M. & Hilbers, C.W. J. Biomol. NMR 10, 337– 350 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Kolk, M.H., Heus, H.A. & Hilbers, C.W. EMBO J. 16, 3685– 3692 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hilbers, C.W., Heus, H.A., Van Dongen, M.J.P. & Wijmenga, S.S. Nucleic Acids Mol. Biol. 8, 56–104 (1994).

    Article  CAS  Google Scholar 

  29. Saenger, W. Principles of nucleic acid structure (Springer-Verlag, New York; 1984).

    Book  Google Scholar 

  30. Haasnoot, C.A.G. et al. J. Biomol. Struct. Dyn. 3, 843– 857 (1986).

    Article  CAS  PubMed  Google Scholar 

  31. Harvey, S.C., Luo, J. & Lavery, R. Nucleic Acids Res. 16, 11795–11809 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arnott, S. & Selsing, E. J. Mol. Biol. 88, 509–521 (1974).

    Article  CAS  PubMed  Google Scholar 

  33. Raghunathan, G., Miles, H.T. & Sasisekharan, V. Biochemistry 32, 455– 462 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Altona, C. & Sundaralingam, M. J. Am. Chem. Soc. 94, 8205–8212 (1972).

    Article  CAS  PubMed  Google Scholar 

  35. Van Duynhoven, J.P.M., Goudriaan, J., Hilbers, C.W. & Wijmenga, S.S. J. Am. Chem. Soc. 114, 10055–10056 (1992).

    Article  CAS  Google Scholar 

  36. Wijmenga, S.S. & Van Buuren, B.N.M. Prog. Nucl. Magn. Reson. Spectrosc. 32, 287–387 (1998).

    Article  CAS  Google Scholar 

  37. Varani, G., Cheong, C. & Tinoco, I. Jr. Biochemistry 30, 3280–3289 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Mooren, M.M.W. On nucleic acid structure analysis by NMR (thesis, University of Nijmegen, Nijmegen, The Netherlands; 1993), pp. 79–141.

  39. Brünger, A.T. X-PLOR manual, version 3.1 (Yale University Press, New Haven, Connecticut; 1992).

    Google Scholar 

  40. Stein, E.G., Rice, L.M. & Brünger, A.T. J. Magn. Reson. 124, 154– 164 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Lavery, R. & Sklenár, V. J. Biomol. Struct. Dyn. 6, 63–91 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

NMR spectra were recorded at the SON National hf-NMR Facility and the NMR large-scale facility (Nijmegen/Utrecht, The Netherlands). We thank J.J.M. Joordens for technical assistance and R.A.M. Avontuur for his contribution in the optimization routines for the P.E.COSY and NOESY based methods in the sugar pucker analysis. G. Martinez and J. Hof are thanked for critical reading of the manuscript, and M. Nilges for valuable help on the implementation of the torsion angle dynamics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sybren S. Wijmenga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Dongen, M., Doreleijers, J., van der Marel, G. et al. Structure and mechanism of formation of the H-y5 isomer of an intramolecular DNA triple helix. Nat Struct Mol Biol 6, 854–859 (1999). https://doi.org/10.1038/12313

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12313

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing