Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A productive NADP+ binding mode of ferredoxin–NADP+ reductase revealed by protein engineering and crystallographic studies

Abstract

The flavoenzyme ferredoxin–NADP+ reductase (FNR) catalyzes the production of NADPH during photosynthesis. Whereas the structures of FNRs from spinach leaf and a cyanobacterium as well as many of their homologs have been solved, none of these studies has yielded a productive geometry of the flavin–nicotinamide interaction. Here, we show that this failure occurs because nicotinamide binding to wild type FNR involves the energetically unfavorable displacement of the C-terminal Tyr side chain. We used mutants of this residue (Tyr 308) of pea FNR to obtain the structures of productive NADP+ and NADPH complexes. These structures reveal a unique NADP+ binding mode in which the nicotinamide ring is not parallel to the flavin isoalloxazine ring, but lies against it at an angle of ~30°, with the C4 atom 3 Å from the flavin N5 atom.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectroscopic characterization of wild type, Y308S and Y308W pea FNRs.
Figure 2: NADP+ binding mode in Y308S–NADP+ complex.
Figure 3: NADP(H) binding to pea FNR mutants.

Similar content being viewed by others

References

  1. Arakaki, A.K., Ceccarelli, E.A. & Carrillo, N. FASEB J. 11, 133– 140 (1997).

    Article  CAS  Google Scholar 

  2. Karplus, P.A., Daniels, M.J. & Herriott, J.R. Science 251, 60– 66 (1991).

    Article  CAS  Google Scholar 

  3. Bruns, C.M. & Karplus, P.A. J. Mol. Biol. 247, 125–145 (1995).

    Article  CAS  Google Scholar 

  4. Serre, L. et al. J. Mol. Biol. 263, 20– 39 (1996).

    Article  CAS  Google Scholar 

  5. Correll, C.C., Ludwig, M.L., Bruns, C.M. & Karplus, P.A. Protein Sci. 2, 2112–2133 (1993).

    Article  CAS  PubMed Central  Google Scholar 

  6. Ingelman, M., Bianchi, V. & Eklund, H. J. Mol. Biol. 268, 147– 157 (1997).

    Article  CAS  Google Scholar 

  7. Nishida, H. et al. Biochemistry 34, 2763– 2767 (1995).

    Article  CAS  Google Scholar 

  8. Lu, G., Campbell, W.H., Schneider, G. & Lindqvist, Y. Structure (London) 2, 809–821 (1994).

    Article  CAS  Google Scholar 

  9. Correll, C.C., Batie, C.J., Ballou, D.P. & Ludwig, M.L. Science 258, 1604–1610 ( 1992).

    Article  CAS  Google Scholar 

  10. Wang, M. et al. Proc. Natl. Acad. Sci. USA 94, 8411– 8416 (1997).

    Article  CAS  Google Scholar 

  11. Pai, E., Karplus, P.A. & Schulz, G.E. Biochemistry 27, 4465– 4474 (1988).

    Article  CAS  Google Scholar 

  12. Karplus, P.A. & Schulz, G.E. J. Mol. Biol. 210, 163–180 (1989).

    Article  CAS  Google Scholar 

  13. Stehle, T., Claiborne, A. & Schulz, G.E. Eur. J. Biochem. 211, 221– 226 (1993).

    Article  CAS  Google Scholar 

  14. Li, R., Bianchet, M.A., Talalay, P. & Amzel, L.M. Proc. Natl. Acad. Sci. USA 92, 8846– 8850 (1995).

    Article  CAS  Google Scholar 

  15. Orellano, E.G., Calcaterra, N.B., Carrillo, N. & Ceccarelli, E.A. J. Biol. Chem. 268, 19267–19273 (1993).

    CAS  PubMed  Google Scholar 

  16. Calcaterra,N.B. et al. Biochemistry 34, 12842– 12848 (1995).

    Article  CAS  Google Scholar 

  17. Aliverti, A., Gadda, G., Ronchi, S., and Zanetti, G. Eur. J. Biochem 198, 21–24 ( 1991).

    Article  CAS  Google Scholar 

  18. Aliverti, A., Lubberstedt, T., Zanetti, G., Herrmann, R.G., and Curti, B. J. Biol. Chem. 266, 17760–17763 (1991).

    CAS  PubMed  Google Scholar 

  19. Aliverti, A. et al. J. Biol. Chem. 273, 34008– 34016 (1998).

    Article  CAS  Google Scholar 

  20. Saenger, W. Principles of Nucleic Acid Structure, Springer-Verlag, New York (1983).

    Google Scholar 

  21. Ammeraal, R.N., Krakow, G. & Vennesland, B. J. Biol. Chem. 240, 1820– 1823 (1965).

    PubMed  Google Scholar 

  22. Young, L. & Post, C.B. Biochemistry 35, 15129–15133 (1996).

    Article  CAS  Google Scholar 

  23. Batie, C.J. & Kamin, H. J. Biol. Chem. 261, 11214–11223 (1986).

    CAS  PubMed  Google Scholar 

  24. Strickland, S., Palmer, G. & Massey, V. J. Biol. Chem. 250, 4048– 4052 (1975).

    CAS  PubMed  Google Scholar 

  25. Batie, C.J. & Kamin, H. J. Biol. Chem. 259, 8832–8839 (1984).

    CAS  PubMed  Google Scholar 

  26. Aliverti, A. et al. Biochemistry 34, 8371– 8379 (1995).

    Article  CAS  Google Scholar 

  27. Aliverti, A. et al. Biochemistry 32, 6374– 6380 (1993).

    Article  CAS  Google Scholar 

  28. Medina, M., Martinez-Julvez, M. Hurley, J.K., Tollin, G. & Gomez-Moreno, C. Biochemistry 37 , 2715–2728 (1998).

    Article  CAS  Google Scholar 

  29. Karplus, P.A. & Bruns, C.M. J. Bioenerg. Biomembr. 26, 89–99 (1994).

    Article  CAS  Google Scholar 

  30. Krauth-Siegel, R.L., Arscott, L.D., Schönleben-Janas, A., Schirmer, R.H. & Williams, C.H., Jr. Biochemistry 37, 13968–13977 (1998).

    Article  CAS  Google Scholar 

  31. Serra, E.C., Carrillo, N., Krapp, A.R. & Ceccarelli, E.A. Protein Express. Purif. 4, 539–546 (1993).

    Article  CAS  Google Scholar 

  32. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 ( 1997).

    Article  CAS  PubMed Central  Google Scholar 

  33. Leslie, A.G.W. CCP4 and ESF-EACMB Newsletters on Protein Crystallography 26 (1992).

  34. Collaborative Computational Project Number 4, Acta Crystallogr. D50, 760–763 (1994).

  35. Navaza, J. Acta Crystallogr. A50, 157–163 (1994).

    Article  CAS  Google Scholar 

  36. Brünger, A.T. X-PLOR, a system for crystallography and NMR, Version 3.1, Yale Univ. Press, New Haven, CT (1992).

    Google Scholar 

  37. Sack, J.S. J. Molec. Graphics 6, 224–225 (1988).

    Article  Google Scholar 

  38. Kraulis, P. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  39. McRee, D.E. J. Molec. Graphics 10, 44–46 (1992).

    Article  Google Scholar 

  40. Merrit, E.A. & Murphy, M.E.P. Acta Crystallogr. D50, 869–873 (1994).

    Google Scholar 

  41. Diederichs, K. & Karplus, P.A. Nature Struct. Biol. 4, 269–275 ( 1997).

    Article  CAS  Google Scholar 

  42. Brünger, A.T. Nature 355, 472– 475 (1992).

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Piubelli for performing some of the spectroscopic experiments, S.E. Ealick for the use of his area detector facility, and T.P. Begley and V. Massey for helpful discussions. This work was supported by grants from the NSF to P.A.K., from CONICET and FONCYT (Argentina) to E.A.C., and from MURST to G.Z. N.C. was a recipient of a John Simon Guggenheim Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Andrew Karplus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Z., Aliverti, A., Zanetti, G. et al. A productive NADP+ binding mode of ferredoxin–NADP+ reductase revealed by protein engineering and crystallographic studies. Nat Struct Mol Biol 6, 847–853 (1999). https://doi.org/10.1038/12307

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12307

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing