Structure of the 13-fold symmetric portal protein of bacteriophage SPP1

Article metrics

Abstract

We have determined the three-dimensional structure of bacteriophage SPP1 portal protein (gp6) using electron microscopy at liquid-helium temperatures and angular reconstitution. The 13-fold symmetric gp6 oligomer is a turbine-shaped structure with three distinct regions: a conical stem with a central channel; the turbine wings region; and a fringe of small 'tentacles' at the end of the channel exposed to the viral head interior. The tentacle region appears flexible and may be associated with a particular function — sensing when the correct amount of DNA has been packaged. The three-dimensional structure of the gp6 SizA mutant, which packages a smaller chromosome, reveals significant differences in that region.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Three-dimensional reconstruction procedures.
Figure 2: The structure of SPP1 wild type portal protein at 18 Å resolution.
Figure 3: SPP1 wild type portal protein versus the SizA packaging mutant.

References

  1. 1

    Bazinet, C. & King, J. Annu. Rev. Microbiol. 39 , 109–129 (1985).

  2. 2

    Valpuesta, J.M. & Carrascosa, J.L. Q. Rev. Biophys. 27, 107–155 ( 1994).

  3. 3

    Tavares, P. et al. FEMS Microbiol. Rev. 17, 47– 56 (1995).

  4. 4

    Dube, P., Tavares., P., Lurz, R. & van Heel, M. EMBO J. 12, 1303–1309 (1993).

  5. 5

    Kocsis, E., Cerritelli, M.E., Trus, B.L., Cheng, N. & Steven, A.C. Ultramicroscopy 60, 219–228 (1995).

  6. 6

    Tsuprun, V., Anderson, D. & Egelman, E.H. Biophys. J. 66, 2139– 2150 (1994).

  7. 7

    van Heel, M., Orlova, E.V., Dube, P. & Tavares, P. EMBO J. 15, 4785–4788 (1996).

  8. 8

    Jekow, P., Schaper, S., Günther, D., Tavares, P. & Hinrichs, W. Acta Crystallogr. D54 , 1008–1011 (1998).

  9. 9

    Tavares, P. et al. J. Mol. Biol. 225, 81– 92 (1992).

  10. 10

    van Heel, M. Ultramicroscopy 21, 111–124 (1987).

  11. 11

    Zemlin, F., Beckmann, E. & van der Mast, K.D. Ultramicroscopy 63, 227– 238 (1996).

  12. 12

    Black, L.W. Annu. Rev. Microbiol. 43, 267–292 (1989).

  13. 13

    Turnquist, S., Simon, M., Egelman, E. & Anderson, D. Proc. Natl. Acad. Sci. USA 89, 10479–10483 (1992).

  14. 14

    Fujisawa, H., Shibata, H. & Kato, H. Virology 185, 788– 794 (1991).

  15. 15

    Krishna, T.S., Kong, X.P., Gary, S., Burgers, P.M. & Kuriyan, J. Cell 79, 1233– 1243 (1994).

  16. 16

    Streisinger, G., Emrich, J. & Stahl, M.M. Proc. Nat. Acad. Sci. USA 57, 292 –295 (1967).

  17. 17

    Tye, B.K., Huberman, J.A. & Botstein, D. J. Mol. Biol. 85, 501– 532 (1974).

  18. 18

    Tavares, P., Lurz, R., Stiege, A., Rückert, B. & Trautner, T.A. J. Mol. Biol. 264, 954– 967 (1996).

  19. 19

    Jekow, P, et al. J. Biochem. in the press ( 1999).

  20. 20

    Dubochet, J. et al. Q. Rev. Biophys. 21, 129– 228 (1988).

  21. 21

    Orlova, E.V. et al. J. Mol. Biol. 271, 417– 437 (1997).

  22. 22

    van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R. & Schatz, M. J. Struct. Biol. 116, 17– 24 (1996).

  23. 23

    van Heel, M. Optik 82, 114–126 ( 1989).

  24. 24

    Harauz, G. & van Heel, M. Optik 73, 146–156 (1986).

  25. 25

    Radermacher, M. J. Elect. Microsc. Tech. 9, 359–394 (1988).

  26. 26

    Müller, D.J., Engel, A., Carrascosa, J.L. & Vélez, M. EMBO J. 16, 2547–2553 ( 1997).

Download references

Acknowledgements

We are indebted to A. Isidro (ITQB, Oeiras) for communicating results prior to publication, and to R. Schmidt and M. Schatz for help with the IMAGIC image processing software. This work was supported in part by the Deutsche Forschungsgemeinschaft, and also by the EC.

Author information

Correspondence to Marin van Heel.

Rights and permissions

Reprints and Permissions

About this article

Further reading