Abstract
The heterotrimeric synaptic soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, consisting of the synaptic vesicle-associated membrane protein 2 (VAMP2) and presynaptic plasma membrane proteins SNAP-25 (synaptosome-associated protein of 25,000 Mr) and syntaxin 1A, is a critical component of the exocytotic machinery. We have used spin labeling electron paramagnetic resonance spectroscopy to investigate the structural organization of this complex, particularly the two predicted helical domains contributed by SNAP-25. Our results indicate that the N- and C-terminal domains of SNAP-25 are parallel to each other and to the C-terminal domain of syntaxin 1A. Based on these findings, we propose a parallel four-stranded coiled coil model for the structure of the synaptic SNARE complex.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Complexin-1 regulated assembly of single neuronal SNARE complex revealed by single-molecule optical tweezers
Communications Biology Open Access 07 February 2023
-
Antidotal treatment of botulism in rats by continuous infusion with 3,4-diaminopyridine
Molecular Medicine Open Access 03 June 2022
-
Conformational change of Syntaxin-3b in regulating SNARE complex assembly in the ribbon synapses
Scientific Reports Open Access 03 June 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Bennett, M. K. & Scheller, R. Annu. Rev. Biochem 63, 63–100 (1994).
Sudhof, T. C. Nature 375, 645–653 (1995).
Niemann, H., Blasi, J. & Jahn, R. Trends Cell Biol. 4, 179–185 (1994).
Hayashi, T. et al. EMBO J. 13, 5051–5061 (1994).
Broadie, K. et al. Neuron 15, 663–673 (1995).
Weber, T. et al. Cell 92, 759–772 (1998).
Poirier, M. A. et al. J. Biol. Chem. 273, 11370–11377 (1998).
Kee, Y., Lin, R. C., Hsu, S. C. & Scheller, R. H. Neuron 14, 991–998 (1995).
Chapman, E. R., An, S., Barton, N. & Jahn, R. J. Biol. Chem. 269, 27427–27432 (1994).
Lupas, A. Meth. Enz. 266, 513–525 (1996).
Fasshauer, D., Bruns, D., Shen, B., Jahn, R. & Brunger, A. T. J. Biol. Chem. 272, 4582–4590 (1997).
Fasshauer, D., Otto, H., Eliason, W. K., Jahn, R. & Brunger, A. T. J. Biol. Chem. 272, 28036–28041 (1997).
Hanson, P. I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J. E. Cell 90, 523–535 (1997).
Lin, R. C. & Scheller, R. H. Neuron 19, 1087–1094 (1997).
Otto, H., Hanson, P. I. & Jahn, R. Proc. Natl. Acad. Sci. USA 94, 6197–6201 (1997).
Hao, J. C., Salem, N., Peng, X. R., Kelly, R. B. & Bennett, M. K. J. Neurosci. 17, 1596–1603 (1997).
Mchaourab, H. S., Lietzow, M. A., Hideg, K. & Hubbell, W. L. Biochemistry 35, 7692–7704 (1996).
Rabenstein, M. D. & Shin, Y.-K. Biochemistry 35, 13922–13928 (1996).
Kim, C.-H., Macosko, J. C. & Shin, Y.-K. Biochemistry 37, 137–144 (1998).
Weimbs, T., et al. Proc. Natl. Acad. Sci. USA 94, 3046–3051 (1997).
Kim, C.-H., Macosko, J. C., Yu, Y. G. & Shin, Y.-K. Biochemistry 35, 5359–5365 (1996).
Rabenstein, M. D. & Shin, Y.-K. Proc. Natl. Acad. Sci. USA 92, 8239–8243 (1995).
Weimbs, T., Mostov, K. E., Low, S. H. & Hofman, K. Trends Cell Biol. 8, 260–262 (1998).
Shin, Y.-K., Levinthal, F., Levinthal, C. & Hubbell, W. L. Science 259, 960–963 (1993).
Thorgeirsson, T. E. et al. J. Mol. Biol. 273, 951–957 (1997).
Brennwald, P. et al. Cell 79, 245–258 (1994).
Guan, K. & Dixon, J. E. Anal. Biochem. 192, 262–267 (1991).
Calakos, N., Bennett, M. K., Peterson, K. E. & Scheller, R. H. Science 263, 1146–1149 (1994).
Cormack, B. In Current Protocols in Molecular Biology (eds Ausubel, F. M. et al. ) 8.5.1–8.5.10 (John Wiley & Sons, Inc., New York; 1997).
Bennett, M. K., Miller, K. G. & Scheller, R. H. J. Neurosci. 13, 1701–1707 (1993).
Harbury, P. B., Zhang, T., Kim, P. S. & Alber, T. Science 262, 1401–1407 (1993).
Acknowledgements
The authors thank L. Gonzalez, Jr. for helpful discussions throughout this work. Support for this research was provided by the National Institutes of Health (M.K.B. and Y.-K.S.), the McKnight Fund for Neuroscience (M.K.B.), and a Searle Scholarship (Y.-K.S.).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Poirier, M., Xiao, W., Macosko, J. et al. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat Struct Mol Biol 5, 765–769 (1998). https://doi.org/10.1038/1799
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/1799
This article is cited by
-
Complexin-1 regulated assembly of single neuronal SNARE complex revealed by single-molecule optical tweezers
Communications Biology (2023)
-
Antidotal treatment of botulism in rats by continuous infusion with 3,4-diaminopyridine
Molecular Medicine (2022)
-
Conformational change of Syntaxin-3b in regulating SNARE complex assembly in the ribbon synapses
Scientific Reports (2022)
-
Evaluation of the tert-butyl group as a probe for NMR studies of macromolecular complexes
Journal of Biomolecular NMR (2021)
-
Analysis of asymmetry in lipid and content mixing assays with reconstituted proteoliposomes containing the neuronal SNAREs
Scientific Reports (2020)