Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and mobility of the PUT3 dimer

Abstract

The solution structure and backbone dynamics of the transcriptional activator PUTS (31–100) has been characterized using NMR spectroscopy. PUT3 (31–100) contains three distinct domains: a cysteine zinc cluster, linker, and dimerization domain. The cysteine zinc cluster of PUT3 closely resembles the solution structure of GAL4, while the dimerization domain forms a long coiled-coil similar to that observed in the crystal structures of GAL4 and PPR1. However, the residues at the N-terminal end of the coiled-coil behave very differently in each of these proteins. A comparison of the structural elements within this region provides a model for the DMA binding specificity of these proteins. Furthermore, we have characterized the dynamics of PUT3 to find that the zinc cluster and dimerization domains have very diverse dynamics in solution. The dimerization domain behaves as a large protein, while the peripheral cysteine zinc clusters have dynamic properties similar to small proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brandriss, M.C. & Magasanik, B. Genetics and physiology of proline utilization in Saccharomyces cerevisiae: enzyme induction by proline. J. Bacteriol. 140, 498–503 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Brandriss, M.C. & Magasanik, B. Genetics and physiology of proline utilization in Saccharomyces cerevisiae: mutation causing constitutive enzyme expression. J. Bacterial. 140, 504–507 (1979).

    CAS  Google Scholar 

  3. Brandriss, M.C. & Magasanik, B. Proline: an essential intermediate in arginine degradation in Saccharomyces cerevisiae. J. Bacteriol. 143, 1403–1410 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Brandriss, M.C. Evidence for positive regulation of the proline utilization pathway in Saccharomyces cerevisiae. Genetics 117, 429–435 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Schjerling, P. & Holmberg, S. Comparative amino acid sequence analysis of the Q zinc cluster family of transcriptional regulators. Nucleic Acids Res. 24, 4599–4607 (1996).

    Article  CAS  Google Scholar 

  6. Marmorstein, R., Carey, M., Ptashne, M. & Harrison, S.C. DNA recognition by GAL4: Structure of a protein-DNA complex. Nature 356, 408–414 (1992).

    Article  CAS  Google Scholar 

  7. Marmorstein, R. & Harrison, S.C. Crystal structure of a PPR1-DNA complex: DNA recognition by proteins containing a Zn2Cys6 binuclear cluster. Genes Dev. 8, 2504–2512 (1994).

    Article  CAS  Google Scholar 

  8. Baleja, J.D., Marmorstein, R., Harrison, S.C. & Wagner, G. Solution structure of the DMA-binding domain of Cd2-GAL4 from Saccharomyces cerevisiae. Nature 356, 450–453 (1992).

    Article  CAS  Google Scholar 

  9. Kraulis, P.J., Raine, A.R.C., Gadhavi, P.L., Laue, E.D. Structure of the DNA binding domain of zinc GAL4. Nature 356, 448–450 (1992).

    Article  CAS  Google Scholar 

  10. Shirakawa, M., Fairbrother, W.J., Serikawa, Y., Ohkubo, T., Kyogoku, Y. & Wright, P.E. Assignment of 1H, 15N, and 13C resonances, identification of elements of secondary structure and determination of the global fold of the DNA-binding domain of GAL4. Biochemistry 32, 2144–2153 (1993).

    Article  CAS  Google Scholar 

  11. Gardner, K. H., Anderson, S. F., & Coleman, J. E. Solution structure of the Kluyveromyces lactis LAC9 Cd2Cys6 DNA-binding domain. Nature Struct. Biol. 2, 898–905 (1995).

    Article  CAS  Google Scholar 

  12. Timmerman, J., Vuidepot, A.-L., Bontems, F., Lallemand. J.-Y, Gervais, M., Shechter, E. & Guiard, B. 1H, 15N resonance assignment and three-dimensional structure of CYP1 (HAP1) DNA-binding domain. J. Mol. Biol. 259, 792–804 (1996).

    Article  CAS  Google Scholar 

  13. Reece, R.J. & Ptashne, M. Determinants of binding-site specificity among yeast C6 zinc cluster proteins. Science 261, 909–911 (1993).

    Article  CAS  Google Scholar 

  14. Peng, J.W. & Wagner, G. Frequency spectrum of NH bonds eglin c from spectral density mapping at multiple fields. Biochemistry 34, 16733–16752 (1995).

    Article  CAS  Google Scholar 

  15. Ishima, R. & Nagayama, K. Protein backbone dynamics revealed by quasi spectral density function analysis of amide N-15 nuclei. Biochemistry, 34, 3162–3171 (1995).

    Article  CAS  Google Scholar 

  16. Ishima, R. & Nagayama, K. Quasi-spectral-density function analysis for nitrogen-15 nuclei in proteins. J. Magn. Reson. B108, 73–76 (1995).

    Article  Google Scholar 

  17. Farrow, N.A., Zhang, O., Forman-Kay, J.D. & Kay, L.E. Comparison of the backbone dynamics of a folded and an unfolded SH3 domain existing in equilibrium in aqueous buffer. Biochemistry 34, 868–878 (1995).

    Article  CAS  Google Scholar 

  18. Lefévre, J.-F., Dayie, K. T., Peng, J. W. & Wagner, G. Internal mobility in the partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the N-H spectral density functions. Biochemistry 35, 2674–2686 (1996).

    Article  Google Scholar 

  19. Brünger, A.T. (1993) XPLOR Version 3.1: A System for X-ray Crystallography and NMR, Yale University Press, New Haven.

    Google Scholar 

  20. Nilges, M. A calculation strategy for the structural determination of symmetric dimers by 1H NMR Proteins 17, 297–309 (1993).

    Article  CAS  Google Scholar 

  21. Morris, A.L., MacArthur, M.W., Hutchinson, E.G. & Thornton, J.M. Stereochemical quality of protein structure coordinates. Proteins 12, 345–364 (1992).

    Article  CAS  Google Scholar 

  22. Nicholls, A.J. (1993) GRASP Manual. Columbia University, New York.

    Google Scholar 

  23. Nirmala, N.R. & Wagner, G. Measurements of 13C relaxation times in proteins by two-dimensional heteronuclear 1H-13C correlation spectroscopy. J. Am. Chem. Soc. 110, 7557–7558 (1988)

    Article  CAS  Google Scholar 

  24. Nirmala, N.R. & Wagner, G. Measurements of 13C spin-spin relaxation times by two-dimensional heteronuclear 1H-13C correlation spectroscopy. J. Magn. Resort. 82, 659–661 (1989).

    CAS  Google Scholar 

  25. Peng, J.W. & Wagner, G. Mapping of spectral density functions using heteronuclear NMR relaxation measurements. J. Magn. Reson. 98, 308–332 (1992a).

    CAS  Google Scholar 

  26. Peng, J.W. & Wagner, G. Mapping of spectral densities of N-H bond motions in Eglin c using heteronuclear relaxation experiments. Biochemistry 31, 8571–8586 (1992b).

    Article  CAS  Google Scholar 

  27. Phan, I.Q.H., Boyd, J. & Campbell, I.D. Dynamic studies of a fibronectin type I module pair at three frequencies anisotropic modelling and direct determination of conformational exchange, J. Biomol. NMR 8, 369–378 (1996).

    Article  CAS  Google Scholar 

  28. Walters, K.J., Matsuo, H. & Wagner, G. A simple method to distinguish intermonomer NOEs in homodimeric proteins with Cz symmetry. J. Am. Chem. Soc, 119, 5958–5959.(1997).

    Article  CAS  Google Scholar 

  29. States, D.J., Haberkorn, R.A. & Ruben, D.J. A two-dimensional nuclear Overhauser experiment with pure absorption phase in four quadrants. J. Magn. Reson. 48, 286–292 (1982).

    CAS  Google Scholar 

  30. Bartels, C., Xia, T.-H., Billeter, M. Guntert, P. & W¨thrich, K. The program XEASY for the computer-supported NMR spectral analysis of biological macromolecules. J. Biomol. NMR 6, 1–10.

  31. Wüthrich, K. 1986. NMR of Proteins and nucleic acids. New York: John Wiley & Sons.

  32. Kay, L.E., Ikura, M., Tschudin, R, Bax, A. Three-dimensional triple-resonance NMR spectroscopy of isotropically enriched proteins. J. Magn. Reson. 89, 496–514 (1990).

    CAS  Google Scholar 

  33. Bax, A. & Ikura, M. An efficient 3D NMR technique for correlating the proton and 15N backbone amide resonances with the α-carbon of the preceding residue in uniformly 15N/13Cenriched proteins. J. Biomol. NMR 1, 99–104 (1991).

    Article  CAS  Google Scholar 

  34. Grzesiek, S. & Bax, A. Improved 3D triple-resonance NMR techniques applied to a 31 kDa protein. J. Magn. Reson. 96, 432–440 (1992).

    CAS  Google Scholar 

  35. Bax, A., Clore, G.M. & Gronenborn, A.M. 1H-1H correlation via isotropic mixing of 13C magnetization, a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins. J. Magn. Reson. 88, 425–431 (1990).

    CAS  Google Scholar 

  36. Marion, D., Driscoll, P.C., Kay, L.E., Wingfield, P.T., Bax, A., Gronenborn, A. M, Clore, G. M. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: Application to interleukin 1β. Biochemistry 28, 6150–6156 (1989).

    Article  CAS  Google Scholar 

  37. Marion, D., Kay, L.E., Sparks, S.W., Torchia, D.A., Bax, A. Three-dimensional heteronuclear NMR of 15N-labeled proteins. J. Am. Chem. Soc. 111, 1515–1517 (1989b).

    Article  CAS  Google Scholar 

  38. Marion, D. & Bax, A.P. COSY, a sensitive alternative for double-quantum-filtered COSY J.Magn. Reson. 80, 528–533 (1988).

    CAS  Google Scholar 

  39. Braunschweiler, L. & Ernst, R.R. Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J. Magn. Reson. 53, 521–528 (1983).

    CAS  Google Scholar 

  40. Bax, A. Davis, D.G. MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J. Magn. Reson. 65, 355–360 (1985).

    CAS  Google Scholar 

  41. Vuister, G.W. & Bax, A. Quantitative J correlation: a new approach for measuring homonuclear three-bond J(HNHα) coupling constants in 15N-enriched proteins. J. Am. Chem. Soc. 115, 7772–7777 (1993).

    Article  CAS  Google Scholar 

  42. Archer, S.J., Ikura, M., Torchia, D.A. & Bax, A. An alternative 3D NMR technique for correlating backbone 1SN with side chain Hβ resonances in larger proteins. J. Magn. Reson. 95, 636–641 (1991).

    CAS  Google Scholar 

  43. Frey, M.H., Wagner, G., Vasák, M., Sørensen, O.W., Neuhaus, D., Wörgötter, E., Kägi, J.H.R., Ernst, R.R. & Wüthrich, K. Polypeptide-metal connectivities in metallothionein 2 by novel 1H-113Cd two-dimensional NMR experiments. J. Am. Chem. Soc. 107, 6847–6859 (1985).

    Article  CAS  Google Scholar 

  44. Dayie, K.T. & Wagner, G. Relaxation-rate measurements for 15N-1H groups with pulsed-f ield gradients and preservation of coherence pathways. J. Magn. Reson. A 111, 121–126 (1994).

    Article  CAS  Google Scholar 

  45. Farrow, N.A., Muhandiram, R., Singer, A.U., Pascal, S.M., Kay, C. M., Gish, G., Shoelson, S. E., Pawson, T., Forman-Kay, J. D., Kay, L. E. Backbone dynamics of a free and phosphopeptide-compiexed Src homolgy 2 domain studied by 15N NMR relaxation. Biochemistry 33, 5984–6003 (1994).

    Article  CAS  Google Scholar 

  46. Markus, M.A., Dayie, K.T., Matsudaira, P. & Wagner, G. Local mobility within Villin 14T probed via heteronuclear relaxation measurements and a reduced spectral density mapping. Biochemistry 33, 1722–1732 (1996).

    Article  Google Scholar 

  47. Kraulis, P. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J.Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walters, K., Dayie, K., Reece, R. et al. Structure and mobility of the PUT3 dimer. Nat Struct Mol Biol 4, 744–750 (1997). https://doi.org/10.1038/nsb0997-744

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0997-744

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing