Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The SH3 domain of Eps8 exists as a novel intertwined dimer

Abstract

SH3 domains are structurally well-characterized as monomeric modular units of protein structure that mediate protein–protein recognition in numerous signal transduction proteins. The X-ray crystallographic structure of the Eps8 SH3 domain reveals a novel variation of the canonical SH3 fold: the SH3 domain from Eps8 is a dimer formed by strand interchange. In addition, co-immunoprecipitation experiments show that intact Eps8 is multimeric in vivo. Hence, the SH3 domain of Eps8 may represent a dimerization motif.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Morton, C.J. et al., Solution structure and peptide binding of the SH3 domain from human Fyn. Structure 4, 705–714 (1996).

    Article  CAS  Google Scholar 

  2. Yu, H. et al., Structural basis for the binding of proline rich peptides to SH3 domains. Cell 76, 933–945 (1994).

    Article  CAS  Google Scholar 

  3. Saraste, M. and Musacchio, A. Backwards and forward binding. Nature Struct. Biol. 1, 835–837 (1994).

    Article  CAS  Google Scholar 

  4. Feng, S., Chen, J.K., Yu, H., Simon, J.A. and Schreiber, S.L. Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interaction. Science 266, 1241–1247 (1994).

    Article  CAS  Google Scholar 

  5. Musacchio, A., Saraste, M. and Wilmanns, M. High resolution crystal structures of tyrosine kinase SH3 domains complexed with proline rich peptides. Nature Struct. Biol. 1, 546–551 (1994).

    Article  CAS  Google Scholar 

  6. Lim, W.A., Richards, F.M. and Fox, R.O. Structural determinants of peptide-binding orientation and of sequence specificity on SH3 domains. Nature 372, 375–379 (1994).

    Article  CAS  Google Scholar 

  7. Terasawa, H. et al., Structure of the N-terminal SH3 domain of GRB2 complexed with a peptide from the guanine nucleotide releasing factor Sos. Nature Struct. Biol. 1, 891–897 (1994).

    Article  CAS  Google Scholar 

  8. Goudreau, N. et al., NMR structure of the N-terminal SH3 domain of GRB2 and its complex with a praline-rich peptide from SOS. Nature Struct. Biol. 1, 898–907 (1994).

    Article  CAS  Google Scholar 

  9. Musacchio, A., Noble, M.E.M., Pauptil, R., Wierenga, R.K. and Saraste, M. Crystal structure of a Src-homology 3 (SH3) domain. Nature 359, 851–855 (1992).

    Article  CAS  Google Scholar 

  10. Noble, M.E.M., Musachio, A., Saraste, M., Courtneidge, S.A. and Wierenga, R.K. Crystal structure of the SH3 domain in human Fyn: a comparison of the three-dimensional structures of SH3 domains in tyrosine kinases and spectrin. EMBO J. 12, 2617–2624 (1993).

    Article  CAS  Google Scholar 

  11. Booker, G.W. et al., Solution structure and ligand binding site of the SH3 domain of the p85 alpha subunit of phosphoinositol 3-kinase. Cell 73, 813–822 (1993).

    Article  CAS  Google Scholar 

  12. Yang, Y.S. et al., Solution structure of GAP SH3 domain by 1H NMR and spatial arrangement of essential Ras signaling-involved sequence. EMBO J. 72, 1270–1279 (1994).

    Article  Google Scholar 

  13. Kohda, D. et al., Solution structure of the SH3 domain of phospholipase-c gamma. Cell 72, 953–960 (1993).

    Article  CAS  Google Scholar 

  14. Borchert, T.V., Mathieu, M., Zeelen, J.P., Courtneidge, S.A. and Wierenga, R.K. The crystal structure of human CskSH3: structural diversity near the RT-src and n-src loop. FEBS Lett. 341, 79–85 (1994).

    Article  CAS  Google Scholar 

  15. Kohda, D. et al., Solution structure and ligand binding site of the carboxyterminal SH3 domain of GRB2. Structure 2, 1029–1040 (1994)

    Article  CAS  Google Scholar 

  16. Fazioli, F. et al., Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. EMBO J. 12, 3799–3808 (1993).

    Article  CAS  Google Scholar 

  17. Fazioli, F., Minichiello, L, Matoskova, B., Wong, W.T. and DiFiore, P.P. Eps15, a novel tyrosine kinase substrate exhibits transforming activity. Mol. Cell Biol. 13, 5814–5828 (1993).

    Article  CAS  Google Scholar 

  18. Castagnino, P., Biesova, Z., Wong, W.T., Fazioli, F., Gill, G. and DiFiore, P.P. Direct binding of Eps8 to the juxtamembrane domain of EGFR is phosphotyrosine and SH2 independent. Oncogene 10, 723–729 (1995).

    CAS  PubMed  Google Scholar 

  19. Matoskova, B., Wong, W.T., Nomura, N., Robbins, K.C. and Di Fiore, P.P. RN-tre specifically binds to the SH3 domain of Eps8 with high affinity and confers growth advantage to NIH3T3 upon carboxy-terminal truncation. Oncogene 12, 2679–2688 (1996).

    CAS  PubMed  Google Scholar 

  20. Bennet, M.J., Schlunegger, M.P. and Eisenberg, D. 3D domain swapping: a mechanism for oligomer assembly. Prot. Sci. 4, 2455–2468 (1995).

    Article  Google Scholar 

  21. Y., Yan, et al., Crystal structure of repetitive segments of spectrin. Science 262, 2027–2030 (1993).

    Article  Google Scholar 

  22. Parge, H.E., Arvai, A.S., Mustari, D.J., Reed, S.I. and Tainer, J.A. Human CksHs2 atomic structure: a role for its hexameric assembly in cell cycle control. Science 262, 387–395 (1993).

    Article  CAS  Google Scholar 

  23. Hunter, C.A., Singh, J. and Thornton, J.M. Pi-Pi interactions: the geometry and energetics of phenylalanine-phenylalanine interactions in proteins. J. Mol. Biol. 218, 837–846 (1991).

    Article  CAS  Google Scholar 

  24. Wu, X. et al., Structural basis for the specific interaction of lysine-containing proline-rich peptides with the N-terminal SH3 domain of c-CRK. Structure 3, 215–226 (1995).

    Article  CAS  Google Scholar 

  25. Hatada, M.H. et al., Molecular basis for interaction of the protein tyrosine kinase ZAP-70 with the T-cell receptor. Nature 377, 835–837 (1995).

    Article  Google Scholar 

  26. Zhang, O. and Forman-Kay, J.D. Structural characterization of folded and unfolded states of and SH3 domain in equilibrium in aqueous buffer. Biochemistry 34, 6784–6792 (1995).

    Article  CAS  Google Scholar 

  27. Matoskova, B., Wong, W.T., Salcini, A.E., Pelicci, P.G. and Di Fiore, P.P. Constitutive phosphosphorylation of Eps8 in tumor cell lines: relevance to malignant transformation. Mol. Cell. Biol. 15, 3805–3812 (1995).

    Article  CAS  Google Scholar 

  28. Guan, K.L. and Dixon, J.E. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione-S-transferase. Anal. Biochem. 192, 262–267 (1991).

    Article  CAS  Google Scholar 

  29. Otwinowski, Z. Proceedings of the CCP4 Study Weekend: Data Collection and Processing (Eds. L. Sawyer, N. Isaacs, S. Bailey), SERC Daresbury Laboratory, Warrington, UK, 56 (1993).

    Google Scholar 

  30. The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallogr. D50, 760 (1994).

  31. BrĂĽnger, AT. X-PLOR, Version 3.1: A System for X-ray Crystallography and NMR. Yale University Press, New Haven, CT.

  32. Tronrud, D.E. Conjugate-direction minimization: an improved method for the refinement of macromolecules. Acta Crystallogr. A48, 912–916 (1992).

    Article  CAS  Google Scholar 

  33. Brünger, AT. The free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 335, 472–474 (1992).

    Article  Google Scholar 

  34. Jones, T.A., Zou, J.Y., Cowan, S.W. and Kjeldgaard, M. Improved methods for building protein models in electron density maps and location of errors in these models. Acta Gyst. A47, 110–119 (1991).

    CAS  Google Scholar 

  35. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A42, 140–149 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radha Kishan, K., Scita, G., Wong, W. et al. The SH3 domain of Eps8 exists as a novel intertwined dimer. Nat Struct Mol Biol 4, 739–743 (1997). https://doi.org/10.1038/nsb0997-739

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0997-739

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing