Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Use of dipolar 1H–15N and 1H–13C couplings in the structure determination of magnetically oriented macromolecules in solution

Abstract

Anisotropy of the molecular magnetic susceptibility gives rise to a small degree of alignment. The resulting residual dipolar couplings, which can now be measured with the advent of higher magnetic fields in NMR, contain information on the orientation of the internuclear vectors relative to the molecular magnetic susceptibility tensor, thereby providing information on long range order that is not accessible by any of the solution NMR parameters currently used in structure determination. Thus, the dipolar couplings constitute unique and powerful restraints in determining the structures of magnetically oriented macromolecules in solution. The method is demonstrated on a complex of the DNA-binding domain of the transcription factor GATA-1 with a 16 base pair oligodeoxyribonucleotide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wüthrich, K. NMR of Proteins and Nucleic Acids (Wiley, New York; 1986).

    Book  Google Scholar 

  2. Clore, G.M. & Gronenborn, A.M. Determination of three-dimensional structures of proteins and nucleic acids in solution by nuclear magnetic resonance spectroscopy. CRC Crit. Rev. Biochem. Mol. Biol. 24, 479–564 (1989).

    Article  CAS  Google Scholar 

  3. Tjandra, N., Garrett, D.S., Gronenborn, A.M., Bax, A. & Clore, G.M. Defining long range order in NMR structure determination from the dependence of heteronuclear relaxation times on rotational diffusion anisotropy. Nature Struct. Biol. 4, 443–449 (1997).

    Article  CAS  Google Scholar 

  4. Gayathri, C., Bothner-By, A.A., van Zijl, P.C. M. & MacLean, C., Dipolar magnetic field effects in NMR spectra of liquids. Chem. Phys. Lett. 87, 192–196 (1982).

    Article  CAS  Google Scholar 

  5. Bothner-By, A.A. Magnetic field induced alignment of molecules. In Encyclopedia of Nuclear Magnetic Resonance (eds Grant, D. M. & Harris, R.K.) 2932–2938 (Wiley, Chichester; 1995).

    Google Scholar 

  6. Tolman, J.R. & Prestegard, J.H. A quantitative J-correlation experiment for the accurate measurement of one-bond amide 15N–1H couplings in proteins. J. Magn. Reson. B 112, 245–252 (1996).

    Article  CAS  Google Scholar 

  7. Tjandra, N., Grzesiek, S. & Bax, A. Magnetic field dependence of nitrogen-proton J splittings in 15N-enriched human ubiquitin resulting from relaxation interference and residual dipolar coupling. J. Am. Chem. Soc. 118, 6264–6272 (1996).

    Article  CAS  Google Scholar 

  8. Tjandra, N. & Bax, A. Measurement of dipolar contributions to 1JCH splittings from magnetic field dependence of J modulation in two-dimensional NMR spectra. J. Magn. Reson. 124, 512–515 (1997).

    Article  CAS  Google Scholar 

  9. Tolman, J.R., Flanagan, J.M., Kennedy, M.A. & Prestegard, J.H. Nuclear magnetic dipole interactions in field-oriented proteins: Information for structure determination in solution. Proc. Natl. Acad. Sci. U.S.A. 92, 9279–9283 (1995).

    Article  CAS  Google Scholar 

  10. Tolman, J.R., Flanagan, J.M., Kennedy, M.A. & Prestegard, J.H. NMR evidence for slow collective motions in cyanometmyoglobin. Nature Struct Biol. 4, 292–297 (1997).

    Article  CAS  Google Scholar 

  11. Tjandra, N. & Bax, A. Are proteins even floppier than we thought? Nature Struct. Biol. 4, 254–256 (1997).

    Article  Google Scholar 

  12. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules I: theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982).

    Article  CAS  Google Scholar 

  13. Sanders, C.R., Hare, B.J., Howard, K.P. & Prestegard, J.H. Magnetically-oriented phospholipid micelles as a tool for the study of membrane-associated molecules. Prog. Nucl. Magn. Reson. Spectrosc. 26, 421–444 (1994).

    Article  CAS  Google Scholar 

  14. Salvatore, B.A., Ghose, R. & Prestegard, J.H. NMR studies of a 13C,15N-labeled GM4-lactam glycolipid at an oriented model-membrane interface J. Am. Chem. Soc. 118, 4001–4008 (1996).

    Article  CAS  Google Scholar 

  15. Werbelow, L.G. in Encyclopedia of Nuclear Magnetic Resonance (eds Grant, D. M. & Harris, R.K.) 4072 (Wiley, Chichester; 1995).

    Google Scholar 

  16. Kung, H.C., Wang, K.Y., Goljer, I. & Bolton, P.H. Magnetic alignment of duplex and quadruplex DNAs. J. Magn. Reson. Ser. B, 109, 323–325 (1995).

    Article  CAS  Google Scholar 

  17. Omichinski, J.G., Clore, G.M., Schaad, O., Felsenfeld, G., Trainor, C., Appella, E., Stahl, S.J., Gronenborn, A.M. NMR structure of a specific DNA complex of a Zn-containing DNA binding domain of GATA-1 Science 261, 438–446 (1993).

    Article  CAS  Google Scholar 

  18. Nilges, M., Gronenborn, A.M., Brünger, A.T. & Clore, G.M. Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints: application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. Protein Engng. 2, 27–38 (1988).

    Article  CAS  Google Scholar 

  19. Metzler, W.J., Wittekind, M., Goldfarb, V., Mueller, L. & Farmer, B.T. Incorporation of 1H/13C/15N-{lle, Leu, Val} into a perdeuterated protein: Potential in structure determination of large proteins by NMR. J. Am. Chem. Soc. 118, 6800–6801 (1996).

    Article  CAS  Google Scholar 

  20. Gardner, K.H., Rosen, M.K. & L.E. Kay, Global folds of highly deuterated, methyl-protonated proteins by multi-dimensional NMR. Biochemistry 36, 1389–1401 (1997).

    Article  CAS  Google Scholar 

  21. Brünger, A.T. XPLOR Manual Version 3.1 (New Haven, Connecticut: Yale University; 1993).

    Google Scholar 

  22. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Marius Clore or Ad Bax.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tjandra, N., Omichinski, J., Gronenborn, A. et al. Use of dipolar 1H–15N and 1H–13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nat Struct Mol Biol 4, 732–738 (1997). https://doi.org/10.1038/nsb0997-732

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0997-732

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing