Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of translation factor elF4E bound to m7GDP and interaction with 4E-binding protein

Abstract

elF4E, the mRNA cap binding protein, is a master switch that controls eukaryotic translation. To be active, it must bind elF4G and form the elF4F complex, which also contains elF4A. Translation is downregulated by association of elF4E with 4E-BP, which occupies the elF4G binding site. Signalling events acting on 4E-BP cause it to dissociate from elF4E, and elF4E is then free to bind elF4G to form the active elF4F complex. We have solved the structure of the yeast elF4E/m7Gpp complex in a CHAPS micelle. We determined the position of the second nucleotide in a complex with m7GpppA, and identified the 4E-BP binding site. elF4E has a curved eight-stranded antiparallel β-sheet, decorated with three helices on the convex face and three smaller helices inserted in connecting loops. The m7G of the cap is intercalated into a stack of tryptophans in the concave face. The 4E-BP binding site is located in a region encompassing one edge of the β-sheet, the adjacent helix a2 and several regions of non-regular secondary structure. It is adjacent to, but does not overlap the cap-binding site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Merrick, W.C. & Hershey, J.W.B. The pathway and mechanism of eukaryotic protein synthesis. In Translational control (eds Hershey, J.W.B., Mathews, M.B., & Sonenberg, N.) 31–69 (Cold Spring Harbor Laboratory Press, Plainview, New York; 1996).

    Google Scholar 

  2. Lamphear, B.J., Kirchweger, R., Skern, T. & Rhoads, R.E. Mapping of functional domains in eukaryotic protein synthesis initiation factor4G (elF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. J. Biol. Chem. 270, 21975–21983 (1995).

    Article  CAS  Google Scholar 

  3. Tarun, S.Z. & Sachs, A.B. Association of the yeast poly(A) tail binding protein with translation initiation factor elF-4G. EMBO J. 15, 7168–7177 (1992).

    Article  Google Scholar 

  4. Haghighat, A., Mader, S., Pause, A. & Sonenberg, N. Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J. 14, 5701–5709 (1995).

    Article  CAS  Google Scholar 

  5. Pause, A. et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 371, 762–767 (1994).

    Article  CAS  Google Scholar 

  6. Sonenberg, N. mRNA 5′cap protein elF4E and control of cell growth. In Translational Control (eds Hershey, J.W.B., Mathews, M.B., & Sonenberg, N.) 245–269 (Cold Spring Harbor Laboratory Press, Plainview, New York; 1996).

    Google Scholar 

  7. Lazaris-Karatzas, A., Montine, K.S. & Sonenberg, N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345, 544–547 (1990).

    Article  CAS  Google Scholar 

  8. Altmann, M., Mueller, P.P., Pelletier, J., Sonenberg, N. & Trachsel, H. A mammalian translation initiation factor can substitute for its yeast homologue in vivo. J. Biol. Chem. 264, 12145–12147 (1989).

    CAS  PubMed  Google Scholar 

  9. Morino, S. et al. Analysis of the mRNA cap-binding ability of human eukaryotic initiation factor-4E by use of recombinant wild-type and mutant forms. Eur. J. Biochem. 239, 597–601 (1996).

    Article  CAS  Google Scholar 

  10. Altmann, M., Edery, I., Trachsel, H. & Sonenberg, N. Site-directed mutagenesis of the tryptophan residues in yeast eukaryotic initiation factor 4E. Effects on cap binding activity. J. Biol. Chem. 263, 17229–17232 (1988).

    CAS  PubMed  Google Scholar 

  11. Vasilescu, S., Ptushkina, M., Linz, B., Muller, P.P. & McCarthy, J.E. Mutants of eukaryotic initiation factor elF4E with altered mRNA cap binding specificity reprogram mRNA selection by ribosomes in Saccharomyces cerevisiae. J. Biol. Chem. 271, 7030–7037 (1996).

    Article  CAS  Google Scholar 

  12. Goyer, C. et al. TIF4631 and TIF4632: Two yeast genes encoding the high-molecular-weight subunits of the cap-binding protein complex (eukaryotic initiation factor 4F) contain an RNA recognition motif-like sequence and carry out an essential function. Mol. Cell. Biol. 13, 4860–4874 (1993).

    Article  CAS  Google Scholar 

  13. Altmann, M., Schmitz, N., Berset, C. & Trachsel, H. A novel inhibitor of cap-dependent translation initiation in yeast: p20 competes with elF4G for binding to elF4E. EMBO J. 16, 1114–1121 (1997).

    Article  CAS  Google Scholar 

  14. Chattopadhyay, A. & Harikumar, K.G. Dependence of critical micelle concentration of a zwitterionic detergent on ionic strength: implications in receptor solubilization. FEBS Lett. 391, 199–202 (1996)

    Article  CAS  Google Scholar 

  15. Walters, K., Matsuo, H. & Wagner, G. Use of deuteration to distinguish intermonomer NOEs in homodimeric proteins with C2 symmetry. J. Am. Chem Soc 119, 5958–5959 (1997).

    Article  CAS  Google Scholar 

  16. Rhoads, R.E., Hellmann, G.M., Remy, P. & Ebel, J.-P. Translational recognition of messenger ribonucleic acid caps as a function of pH. Biochemistry 22, 6084–6088 (1983).

    Article  CAS  Google Scholar 

  17. Ueda, H. et al. Expression of a synthetic gene for human cap binding protein (Human IF-4E) in Escherichia coli and fluorescence studies on interaction with mRNA cap structure analogues. J. Biochem. 109, 882–889 (1991).

    Article  CAS  Google Scholar 

  18. Ishida, T. et al., Specific ring stacking interaction on the tryptophan-7methylguanine system: Comparativecrystallographic studies of indolederivatives-7-methylguanine base, nucleoside, and nucleotide complexes. J. Am. Chem. Soc. 10, 2286–2294 (1988).

    Article  Google Scholar 

  19. Carberry, S.E. et al., A spectroscopic study o the binding of N-7-substituted cap analogues to human protein synthesis initiation factor 4E. Biochemistry, 29, 3337–3341 (1990).

    Article  CAS  Google Scholar 

  20. Nagai, K. RNA-protein complexes. Curr. Opin. Struct. Biol. 6, 53–61 (1996).

    Article  CAS  Google Scholar 

  21. Hodel, A.E., Gershon, P.O., Shi, X., Wang, S.-M. & Quiocho, F.A. Specific protein recognition of an mRNA cap through its alkylated base. Nature Struct. Biol. 4, 350–354 (1997).

    Article  CAS  Google Scholar 

  22. Labahn, J. et al. Structural basis for the excision repair of alkylation-damaged DNA. Cell, 86, 321–329 (1996).

    Article  CAS  Google Scholar 

  23. Marcotrigiano, J., Gingras, A.-C., Sonenberg, N., Burley, S.K. Cocrystal structure of the messenger RNA 5′ cap-binding protein (elF4E) bound to 7-methyl-GDP. Cell, 89 951–961 (1997).

    Article  CAS  Google Scholar 

  24. Edery, I., Altmann, M. & Sonenberg, N. High-level synthesis in Escherichia coli of functional cap-binding eukaryotic initiation factor elF4E and affinity purification using a simplified cap-analog resin. Gene 74, 517–525 (1988).

    Article  CAS  Google Scholar 

  25. Whalen, S.G. et al. Phosphorylation of elF4E on serine 209 by protein kinase C is inhibited by the translational repressers, 4E-binding proteins. J. Biol. Chem 271, 11831–11837 (1996).

    Article  CAS  Google Scholar 

  26. NMR of Proteins (eds Clore, G.M. & Gronenborn, A.M.) (CRC Press, Ann Arbor Michigan;1993).

    Google Scholar 

  27. Bartels, C., Xia, T., Billeter, M. Guntert & Wuthrich, K. The program XEASY for computer-supported NMR specral analysis of biological macromolecules. J. Biomol. NMR, 5, 1–10 (1995).

    Article  Google Scholar 

  28. Dunbrack, R. & Karplus, M. Backbone-dependent rotamer library for proteins. Application to side-chain prediction. J. Mol. Biol. 230, 543–574 (1993).

    Article  CAS  Google Scholar 

  29. Nilges, M., Clore, G.M. & Gronenborn, A.M. Determination of three-dimensional structures of proteins from interproton distance data by dynamical simulated annealing from a random array of atoms. FEBS Lett., 239, 129–136 (1988).

    Article  CAS  Google Scholar 

  30. Brünger, A.T. XPLOR Version 3.1 (Yale University Press, New Haven, Connecticut; 1993).

    Google Scholar 

  31. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins, 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  32. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J.Appl Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  33. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuo, H., Li, H., McGuire, A. et al. Structure of translation factor elF4E bound to m7GDP and interaction with 4E-binding protein. Nat Struct Mol Biol 4, 717–724 (1997). https://doi.org/10.1038/nsb0997-717

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0997-717

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing