Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme

Abstract

The Camelidae is the only taxonomic family known to possess functional heavy-chain antibodies, lacking light chains. We report here the 2.5 Å resolution crystal structure of a camel VH in complex with its antigen, lysozyme. Compared to human and mouse VH domains, there are no major backbone rearrangements in the VH framework. However, the architecture of the region of VH that interacts with a VL in a conventional Fv is different from any previously seen. Moreover, the CDR1 region, although in sequence homologous to human CDR1, deviates fundamentally from the canonical structure. Additionally, one half of the CDR3 contacts the VH region which in conventional immunoglobulins interacts with a VL, whereas the other half protrudes from the antigen binding site and penetrates deeply into the active site of lysozyme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Winter, G. & Milstein, C. Man-made antibodies. Nature 349, 293–299 (1991).

    CAS  PubMed  Google Scholar 

  2. Nilsson, B. Antibody engineering. Curr. Opin. Struct. Biol. 5, 450–456 (1995).

    CAS  PubMed  Google Scholar 

  3. Givol, D. The minimal antigen-binding fragment of antibodies-Fv fragment. Molec. Immunol. 28, 1379–1386 (1991).

    CAS  Google Scholar 

  4. Fan, Z. et al. Three-dimensional structure of an Fv from a human IgM immunoglobulin. J. Mol. Biol. 228, 188–207 (1992).

    CAS  PubMed  Google Scholar 

  5. Padlan, E.A. Anatomy of the antibody molecule. Molec. Immunol. 31, 169–217 (1994).

    CAS  Google Scholar 

  6. Skerra, A. & Plückthun, A. Assembly of a functional immunoglobulin Fv fragment in E. coli. Science. 240, 1038–1041 (1988).

    CAS  PubMed  Google Scholar 

  7. Skerra, A. Bacterial expression of immunoglobulin fragments. Curr. Opin. Immunol. 5, 256–262 (1993).

    CAS  PubMed  Google Scholar 

  8. Glockshuber, R., Malia, M., Pfitzinger, I. & Plückthun, A. A comparison of strategies to stabilize immunoglobulin Fv fragments. Biochemistry. 29, 1362–1367 (1990).

    CAS  PubMed  Google Scholar 

  9. Jung, S., Pastan, I. & Lee, B. Design of interchain disulfide bonds in the framework region of the Fv fragment of the monoclonal antibody B3. Proteins Struct. Funct. Genet. 19, 35–47 (1994).

    CAS  PubMed  Google Scholar 

  10. Bird, R.E. et al. Single chain antigen binding proteins. Science. 241, 423–426 (1988).

    Google Scholar 

  11. Ward, E.S., Güssow, D., Griffiths, A.D., Jones, P.T. & Winter, G. Binding activities of a repertoire of single immunoglobulin variable domains secreted from E. coli. Nature 341, 544–546 (1989).

    CAS  PubMed  Google Scholar 

  12. Hamers-Casterman, C. et al. Naturally occurring antibodies devoid of light chains. Nature 363, 446–448 (1993).

    CAS  PubMed  Google Scholar 

  13. Muyldermans, S., Atarhouch, T., Saldanha, J., Barbosa, J.A. & Hamers, R. Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Prot. Engng. 7, 1129–1135 (1994).

    CAS  Google Scholar 

  14. Davies, J. & Riechmann, L. Camelising human antibody fragments: NMR studies on VH domains. FEBS Letters. 339, 285–290 (1994).

    CAS  PubMed  Google Scholar 

  15. Chothia, C., Novotny, J., Bruccoleri, R. & Karplus, M. Domain association in immunoglobulin molecules. The packing of variable domains. J. Mol. Biol. 186, 651–663 (1985).

    CAS  PubMed  Google Scholar 

  16. Stanfield, R.L., Takimoto-Kamimura, M., Rini, J.M., Profy, A.T. & Wilson, I.A. Major antigen-induced domain rearrangements in an antibody. Structure 1, 83–93 (1993).

    CAS  PubMed  Google Scholar 

  17. Wu, T.T., Johnson, G. & Kabat, E.A. Length distribution of CDR H3 in antibodies. Proteins Struct. Funct. Genet. 16, 1–7 (1993).

    CAS  PubMed  Google Scholar 

  18. Davies, J. & Riechmann, L. Antibody VH domains as small recognition units. Bio/Technology. 13, 475–479 (1995).

    CAS  PubMed  Google Scholar 

  19. Sheriff, S. et al. Three-dimensional structure of an antibody-antigen complex. Proc. Natl. Acad. Sci. USA 84, 8075–8079 (1987).

    CAS  PubMed  Google Scholar 

  20. Cohen, G.H., Sheriff, S. & Davies, D.R. Refined structure of the monoclonal antibody HyHEL-5 with its antigen hen egg-white lysozyme. Acta Crystallogr. D52, 315–326 (1996).

    CAS  Google Scholar 

  21. Padlan, E.A., Silverton, E.W., Sheriff, S., Cohen, G.H., Smith-Gill, S.J. & Davies, D.R. Structure of an antibody-antigen complex: Crystal structure of the HyHEL-10 Fab-lysozyme complex. Proc. Natl. Acad. Sci. USA 86, 5938–5942 (1989).

    CAS  PubMed  Google Scholar 

  22. Amit, A.G., Mariuzza, R.A., Phillips, S.E. & Poljak, R.J. Three-dimensional structure of an antibody-antigen complex at 2.8 Å resolution. Science 233, 747–753 (1986).

    CAS  PubMed  Google Scholar 

  23. Bhat, T.N. et al. Bound water molecules and conformational stabilization help mediate an antigen-antibody association. Proc. Natl. Acad. Sci. USA 91, 1089–1093 (1994).

    CAS  PubMed  Google Scholar 

  24. Chitarra, V. et al. Three dimensional structure of a heteroclinic antigen-antibody cross-reaction complex. Proc. Natl. Acad. Sci. USA 90, 7711–7715 (1993).

    CAS  PubMed  Google Scholar 

  25. Braden, B.C. et al. Three dimensional structures of the free and the antigen-complexed Fab form monoclonal anti-lysozyme antibody D44.1. J. Mol. Biol. 243, 767–781 (1994).

    CAS  PubMed  Google Scholar 

  26. Padlan, E.A. et al. Structure of an antibody-antigen complex: Crystal structure of the HyHEL-10 Fab-lysozyme complex. Proc. Natl. Acad. Sci. USA. 86, 5938–5942 (1989).

    CAS  PubMed  Google Scholar 

  27. Lescar, J. et al. Crystal structure of a cross-reaction complex between Fab F9.13.7 and guinea-fowl lysozyme. J. Biol. Chem. 270, 18067–18076 (1995).

    CAS  PubMed  Google Scholar 

  28. Davies, D.R. & Padlan, E.A. Antibody-antigen complexes. Annu. Rev. Biochem. 59, 439–473 (1990).

    CAS  PubMed  Google Scholar 

  29. Davies, D.R. & Cohen, G.H. Interactions of protein antigens with antibodies. Proc. Natl. Acad. Sci. USA 93, 7–12 (1996).

    CAS  PubMed  Google Scholar 

  30. Hoogenboom, H.R. et al. Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab), heavy and light chains. Nucl. Adds Res. 19, 4133–4137 (1991).

    CAS  Google Scholar 

  31. Winter, G., Griffiths, A.D., Hawkins, R.E. & Hoogenboom, H.R. Making antibodies by phage display technology. Annu. Rev. Immunol. 12, 433–455 (1994).

    CAS  PubMed  Google Scholar 

  32. Friguet, B., Chaffotte, A.F., Djavadi-Ohaniance, L.D. & Goldberg, M.E. Measurement of the true affinity constant in solution of antigen-antibody complexes by enzyme linked immunosorbent assay. J. Immunol. Meths. 77, 305–319 (1985).

    CAS  Google Scholar 

  33. Harata, K. X-ray structure of a monoclinic form of hen egg-white lysozyme crystallized at 313 K. Comparison of two independent molecules. Acta Crystallogr. D50, 250–257 (1994).

    CAS  Google Scholar 

  34. Kabat, E.A., Wu, T.T., Perry, H.M., Gottesman, K.S. & Foeler, C. Sequences of proteins of immunological interest. US Public Health Services, NIH, Bethesda, MD. Publication No. 91-3242 (1991).

  35. Chothia, C., Boswell, D.R. & Lesk, A.M. The outline structure of the T-cell αβ receptor. EMBO J. 7, 3745–3755 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kirkham, P.M., Mortari, F., Newton, J.A. & Schroeder, H.W., Jr. Immunoglobulin VH clan and family identity predicts variable domain structure and may influence antigen binding. EMBO J. 11, 603–609 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chothia, C. et al. Structural repertoire of human VH segments. J. Mol. Biol. 227, 799–817 (1992).

    CAS  PubMed  Google Scholar 

  38. Saul, F.A. & Poljak, R.J. Structural patterns at residue positions 9,18, 67, and 82 in the VH framework regions of human and murine immunoglobulins. J. Mol. Biol. 230, 15–20 (1993).

    CAS  PubMed  Google Scholar 

  39. Riechmann, L. Rearrangement of the former VL interface in the solution structure of a camelised, single domain VH antibody. J. Mol. Biol. 259, 957–969 (1996).

    CAS  PubMed  Google Scholar 

  40. Chothia, C. et al. Conformations of immunoglobulin hypervariable regions. Nature 342, 877–883 (1989).

    CAS  PubMed  Google Scholar 

  41. Tramontane, A., Chothia, C. & Lesk, A.M. Framework residue 71 is a major determinant of the position and conformation of the second hypervariable region in the VH domains of immunoglobulins. J. Mol. Biol. 215, 175–182 (1990).

    Google Scholar 

  42. Barré, S., Greenberg, A.S., Flajnik, M.F. & Chothia, C. Structural conservation of hypervariable regions in immunoglobulins evolution. Nature Struct. Biology 1, 915–920 (1994).

    Google Scholar 

  43. Tomlinson, I.M., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G. The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops. J. Mol. Biol. 227, 776–798 (1992).

    CAS  PubMed  Google Scholar 

  44. Ghiara, J.B., Stura, E.A., Stanfield, L., Profy, A.T. & Wilson, I.A. Crystal structure of the principal neutralization site of HIV-1. Science 264, 82–85 (1994).

    CAS  PubMed  Google Scholar 

  45. Webster, D.M., Henry, A.H. & Rees, A.R. Antibody-antigen interactions. Curr. Opin. Struct. Biol. 4, 123–129 (1994).

    CAS  Google Scholar 

  46. Fields, B.A., Goldbaum, F.A., Ysern, X., Poljak, R.J. & Marriuzza, R. Molecular basis of antigen mimicry by an anti-idiotope. Nature 374, 739–742 (1995).

    CAS  PubMed  Google Scholar 

  47. Braden, B.C. & Poljak, R.J. Structural features of the reactions between antibodies and protein antigens. FASEB J. 9, 9–16 (1995).

    CAS  PubMed  Google Scholar 

  48. All CCP4 software ‘The CCP4 Suite’: Programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

  49. Lee, B. & Richards, F.M. The interpretation of protein structure: estimation of static accessiblility. J. Mol. Biol. 55, 379–400 (1971).

    CAS  PubMed  Google Scholar 

  50. Kirby, A.J. Turning lysozyme upside down. Nature Struct. Biology 2, 923–925 (1995).

    CAS  Google Scholar 

  51. Novotny, J. Protein antigenicity: a thermodynarnic approach. Molec. Immunol. 28, 201–207 (1991).

    CAS  Google Scholar 

  52. Messerschmidt, A. & Plugrath, J.W. Crystal orientation and X ray pattern prediction routines for area-detector diffractometer systems in macromolecular crystallography. J. Appl. Crystallogr. 20, 306–315 (1987).

    CAS  Google Scholar 

  53. Brünger, A.T. X-PLOR Version 3.1 Manual: A system for X-ray crystallography and NMR. Yale University, New Haven, CT 06511, USA.(1992).

    Google Scholar 

  54. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved method for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    CAS  Google Scholar 

  55. Brünger, A.T. The free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature. 335, 472–475 (1992).

    Google Scholar 

  56. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK-A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    CAS  Google Scholar 

  57. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991)

    Google Scholar 

  58. Merritt, E.A. & Murphy, M.E. RASTER 3D version 2.0 a program for photorealistic molecular graphics. Acta Crystallogr. D50, 869–873 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desmyter, A., Transue, T., Ghahroudi, M. et al. Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat Struct Mol Biol 3, 803–811 (1996). https://doi.org/10.1038/nsb0996-803

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0996-803

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing