Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of dimeric HIV-1 capsid protein

Abstract

X-ray diffraction analysis of a human immunodeficiency virus (HIV-1) capsid (CA) protein shows that each monomer within the dimer consists of seven α-helices, five of which are arranged in a coiled coil-like structure. Sequence assignments were made for two of the helices, and tentative connectivity of the remainder of the protein was confirmed by the recent solution structure of a monomeric N-terminal fragment. The C-terminal third of the protein is mostly disordered in the crystal. The longest helices in the coiled coil-like structure are separated by a long, highly antigenic peptide that includes the binding site of an antibody fragment complexed with CA in the crystal. The site of binding of the Fab, the position of the antigenic loop and the site of cleavage between the matrix protein and CA establish the side of the dimer that would be on the exterior of the retroviral core.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nermut, M.V. & Thomas, D. Fullerene-like organization of HIV gag-protein shell in virus-like particles produced by recombinant baculovirus. Virology 198, 288–296 (1994).

    CAS  PubMed  Google Scholar 

  2. Gelderblom, H.R., Hausmann, E.H.S. Özel, M., Pauli, G. & Koch, M.A. Fine structure of human immunodeficiency virus (HIV) and immunolocalization of structural proteins. Virology 156, 171–176 (1987).

    CAS  PubMed  Google Scholar 

  3. Kaplan, A.H. & Swanstrom, R. Human immunodeficiency virus type 1 gag proteins are processed into two cellular compartments. Proc. Natl. Acad. Sci. USA 88, 4528–4532 (1991).

    CAS  PubMed  Google Scholar 

  4. Pal, R. et al. Myristoylation of gag proteins of HIV-1 plays an important role in virus assembly. AIDS Res. Hum. Retroviruses 6, 721–730 (1990).

    CAS  PubMed  Google Scholar 

  5. Bryant, M. & Ratner, L. Myristoylation-dependent replication and assembly of human immunodeficiency virus 1. Proc. Natl. Acad. Sci. USA 87, 523–527 (1990).

    CAS  PubMed  Google Scholar 

  6. Chazal, N., Carrière, C., Gay, B. & Boulanger, P. Phenotypic characterization of insertion mutants of the human immunodeficiency virus type 1 gag precursor expressed in recombinant baculovirus-infected cells. J. Virol. 68, 111–122 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Carrière, C., Gay, B., Chazal, N., Morin, N. & Boulanger, P. Sequence requirements for encapsidation of deletion mutants and chimeras of human immunodeficiency virus type 1 gag precursor into retrovirus-like particles. J. Virol. 69, 2366–2377 (1995).

    PubMed  PubMed Central  Google Scholar 

  8. Dorfman, T., Bukovsky, A., Öhagen, Å., Höglund, S. & Göttlinger, H.G. Functional domains of the capsid protein of human immunodeficiency virus type 1. J. Virol. 68, 8180–8187 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hong, S.S. & Boulanger, P. Assembly-defective point mutants of the human immunodeficiency virus type 1 gag precursor phenotypically expressed in recombinant baculovirus-infected cells. J. Virol. 67, 2787–2798 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Srinivasakuman, N., Hammarskjöld, M.-L. & Rekosh, D. Characterization of deletion mutations in the capsid region of human immunodeficiency virus type 1 that affect particle formation and gag-pol precursor incorporation. J. Virol. 69, 6106–6114 (1995).

    Google Scholar 

  11. von Poblotzki, A. et al. Identification of a region in the PR55gag-polyprotein essential for HIV-1 particle formation. Virology 193, 981–985 (1993).

    CAS  PubMed  Google Scholar 

  12. Zhao, Y., Jones, I.M., Hockley, D.J., Nermut, M.V. & Roy, P. Complementation of human immunodeficiency virus (HIV-1) gag particle formation. Virology 199, 403–408 (1994).

    CAS  Google Scholar 

  13. Zhang, W.-H., Hockley, D.J., Nermut, M.V., Morikawa, Y. & Jones, I.M. Gag-Gag interactions in the C-terminal domain of human immunodeficiency virus type 1 p24 capsid antigen are essential for Gag particle assembly. J. Gen. Virol. 77, 743–751 (1996).

    CAS  PubMed  Google Scholar 

  14. Patarca, R. & Haseltine, W.A. A major retroviral core protein related to EPA and TIMP. Nature 318, 390 (1985).

    CAS  PubMed  Google Scholar 

  15. Ratner, L. et al. Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 313, 277–283 (1985).

    CAS  PubMed  Google Scholar 

  16. Wang, C.-T. & Barklis, E. Assembly, processing and infectivity of human immunodeficiency virus type 1 gag mutants. J. Virol. 67, 4264–4273 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Reicin, A.S. et al. Linker insertion mutations in the human immunodeficiency virus type 1 gag gene: effects on virion particle assembly, release and infectivity. J. Virol. 69, 642–650 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Luban, J., Bossolt, K.L., Franke, E.K., Kalpana, G.V. & Goff, S.P. Human immunodeficiency virus type 1 gag protein binds to cyclophilins A and B. Cell 73, 1067–1078 (1993).

    CAS  PubMed  Google Scholar 

  19. Franke, E.K. et al. Cyclophilin binding to the human immunodeficiency virus type 1 gag polyprotein is mimicked by an anti-cyclosporine antibody. J. Virol. 69, 5821–5823 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Thali, M. et al. Functional association of cyclophilin A with HIV-1 virions. Nature 372, 363–365 (1994).

    CAS  PubMed  Google Scholar 

  21. Billich, A. et al. Mode of action of SDZ NIM 811, a nonimmunosuppressive cyclosporin A analog with activity against human immunodeficiency virus (HIV) type 1: interference with HIV protein-cyclophilin A interactions. J. Virol. 69, 2451–2461 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Klasse, P.J., Schultz, T.F. & Willison, K.R. Cyclophilins unfold the gag? Nature 365, 395–396 (1993).

    CAS  PubMed  Google Scholar 

  23. Rossmann, M.G. Antiviral agents targeted to interact with viral capsid proteins and a possible application to human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 85, 4625–4627 (1988).

    CAS  PubMed  Google Scholar 

  24. Argos, P. A possible homology between immunodeficiency virus p24 core protein and picornaviral VP2 coat protein: prediction of HIV p24 antigenic sites. EMBO J. 8, 779–785 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Langedijk, J.P.M., Schalken, J.J., Tersmette, M., Huisman, J.G. & Meloen, R.H. Location of epitopes on the major core protein p24 of human immunodeficiency virus. J. Gen. Virol. 71, 2609–2614 (1990).

    CAS  PubMed  Google Scholar 

  26. Robert-Hebmann, V. et al. Clonal analysis of murine B cell response to the human immunodeficiency virus type 1 (HIV1)-gag p17 and p25 antigens. Mol. Immunol. 29, 729–738 (1992).

    CAS  PubMed  Google Scholar 

  27. Coates, A.R.M., Cookson, J., Barton, G.J., Zvelebil, M.J. & Sternberg, M.J.E. AIDS vaccine predictions. Nature 326, 549–550 (1987).

    CAS  PubMed  Google Scholar 

  28. Ehrlich, L.S., Agresta, B.E., Gelfand, C.A., Jentoft, J. & Carter, C.A. Spectral analysis and tryptic susceptibility as probes of HIV-1 capsid protein structure. Virology 204, 515–525 (1994).

    CAS  PubMed  Google Scholar 

  29. Misselwitz, R., Hausdorf, G., Welfle, K., Hohne, W.E. & Welfle, H. Conformation and stability of recombinant HIV-1 capsid protein p24 (rp24). Biochim. Biophys. Acta 1250, 9–18 (1995).

    PubMed  Google Scholar 

  30. Burns, N.R. et al. Purification and secondary structure determination of simian immunodeficiency virus p27. J. Mol. Biol. 216, 207–211 (1990).

    CAS  PubMed  Google Scholar 

  31. Burnette, W.N., Holladay, L.A. & Mitchell, W.M. Physical and chemical properties of Moloney murine leukemia virus p30 protein: a major core structural component exhibiting high helicity and self-association. J. Mol. Biol. 107, 131–143 (1976).

    CAS  PubMed  Google Scholar 

  32. Prongay, A.J. et al. Preparation and crystallization of a human immunodeficiency virus p24-Fab complex. Proc. Natl. Acad. Sci. USA 87, 9980–9984 (1990).

    CAS  PubMed  Google Scholar 

  33. Air, G.M., Webster, R.G., Colman, P.M. & Laver, W.G. Distribution of sequence differences in influenza N9 neuraminidase of tern and whale viruses and crystallization of the whale neuraminidase complexed with antibodies. Virology 160, 346–354 (1987).

    CAS  PubMed  Google Scholar 

  34. Stammers, D.K. et al. Structural studies on human immunodeficiency virus reverse transcriptase in Use of X-ray Crystallography in the Design of Antiviral Agents, (eds. Laver, W.G. & G.M. Air) 309–319. (Academic Press, Inc., San Diego, 1990).

    Google Scholar 

  35. Jacobo-Molina, A. et al. Crystals of a ternary complex of human immunodeficiency virus type 1 reverse transcriptase with a monoclonal antibody Fab fragment and double-stranded DNA diffract X-rays to 3.5 Å resolution. Proc. Natl. Acad. Sci. USA 88, 10895–10899 (1991).

    CAS  PubMed  Google Scholar 

  36. Ostermeier, C., Iwata, S., Ludwig, B. & Michel, H. Fv fragment-mediated crystallization of the membrane protein bacterial cytochrome c oxidase. Nature Struct. Biology 2, 842–845 (1995).

    CAS  Google Scholar 

  37. Gitti, R.K. et al. Structure of the N-terminal core domain of the HIV-1 capsid protein. Science 273, 231–235 (1996).

    CAS  PubMed  Google Scholar 

  38. Grimes, J., Basak, A.K., Roy, P. & Stuart, D. The crystal structure of bluetongue virus VP7. Nature 373, 167–170 (1995).

    CAS  PubMed  Google Scholar 

  39. Munshi, S. et al. Membrane translocation of viral RNA: deductions from the 2.8 Å structure of a T=4 virus. J. Mol. Biol. In the press (1996).

    Google Scholar 

  40. Cheng, R.H. et al. Functional implications of quasi-equivalence in a T = 3 icosahedral animal virus established by cryo-electron microscopy and X-ray crystallography. Structure 2, 271–282 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rao, Z. et al. Crystal structure of SIV matrix antigen and implications for virus assembly. Nature 378, 743–747 (1995).

    CAS  PubMed  Google Scholar 

  42. Hill, C.P., Worthylake, D., Bancroft, D.P., Christensen, A.M. & Sundquist, W.I. Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly. Proc. Natl. Acad. Sci. USA 93, 3099–3104 (1996).

    CAS  PubMed  Google Scholar 

  43. Matthews, S. et al. Structural similarity between the p17 matrix protein of HIV-1 and interferon-γ. Nature 370, 666–668 (1994).

    CAS  PubMed  Google Scholar 

  44. Massiah, M.A. et al. Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein. J. Mol. Biol. 244, 198–223 (1994).

    CAS  PubMed  Google Scholar 

  45. O'Shea, E.X., Klemm, J.D., Kirn, P.S. & Alber, T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254, 539–544 (1991).

    CAS  PubMed  Google Scholar 

  46. Crick, F.H.C. The packing of α-helices: simple coiled-coils. Acta Crystallogr. 6, 689–697 (1953).

    CAS  Google Scholar 

  47. Crick, F.H.C. The Fourier transform of a coiled-coil. Acta Crystallogr. 6, 685–689 (1953).

    CAS  Google Scholar 

  48. Harbury, P.B., Zhang, T., Kim, P.S. & Alber, T. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262, 1401–1407 (1993).

    CAS  PubMed  Google Scholar 

  49. Cohen, C. & Parry, D.A.D. α-helical coiled coils and bundles: how to design an α-helical protein. Proteins 7, 1–15 (1990).

    CAS  PubMed  Google Scholar 

  50. Harbury, P.B., Kim, P.S. & Alber, T. Crystal structure of an isoleucine-zipper trimer. Nature 371, 80–83 (1994).

    CAS  PubMed  Google Scholar 

  51. Higgins, D.G., Bleasby, A.J. & Fuchs, R. CLUSTAL V: improved software for multiple sequence alignment. Comp. Appl. Biosci. 8, 189–191 (1992).

    CAS  PubMed  Google Scholar 

  52. Rost, B. & Sander, C. Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 232, 584–599 (1993).

    CAS  PubMed  Google Scholar 

  53. McClure, M.A. Evolution of retroposons by acquisition or deletion of retrovirus-like genes. Mol. Biol. Evol. 8, 835–856 (1991).

    CAS  PubMed  Google Scholar 

  54. Partin, K., Kräusslich, H.-G., Ehrlich, L., Wimmer, E. & Carter, C. Mutational studies of a native substrate of the human immunodeficiency virus type 1 proteinase. J. Virol. 64, 3938–3947 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Rossmann, M.G. Viral cell recognition and entry. Prot. Sci. 3, 1712–1725 (1994).

    CAS  Google Scholar 

  56. Rosé, S. et al. Characterization of HIV-1 p24 self-association using analytical affinity chromatography. Proteins 13, 112–119 (1992).

    PubMed  Google Scholar 

  57. Wikoff, W.R. et al. The structure of a neutralized virus: canine parvovirus complexed with neutralizing antibody fragment. Structure 2, 595–607 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kallen, J. & Walkinshaw, M.D. The X-ray structure of a tetrapeptide bound to the active site of human cyclophilin A. FEBS Letters 300, 286–290 (1992).

    CAS  PubMed  Google Scholar 

  59. Franke, E.K., Yuan, H.E.H. & Luban, J. Specific incorporation of cyclophilin A into HIV-1 virions. Nature 372, 359–362 (1994).

    CAS  PubMed  Google Scholar 

  60. Ehrlich, L.S., Kräusslich, H.-G., Wimmer, E. & Carter, C.A. Expression in Eschericia coli and purification of human immunodeficiency virus type 1 capsid protein (p24). AIDS Res. Hum. Retroviruses 6, 1169–1175 (1990).

    CAS  PubMed  Google Scholar 

  61. Kovari, L.C., Momany, C. & Rossmann, M.G. The use of antibody fragments for crystallization and structure determinations. Structure 3, 1291–1293 (1995).

    CAS  PubMed  Google Scholar 

  62. Larrick, J.W. et al. Rapid cloning of rearranged immunoglobulin genes from human hybridoma cells using mixed primers and the polymerase chain reaction. Biochem. Biophys. Res. Comm. 160, 1250–1256 (1989).

    CAS  PubMed  Google Scholar 

  63. Otwinowski, Z. DENZO in Data Collection and Processing, (eds. Sawyer, L., N. Isaacs & S. Bailey) 56–62 (SERC Daresbury Laboratory, Warrington, UK, 1993).

    Google Scholar 

  64. Collaborative Computational Project Number 4 The CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

  65. Cowtan, K.D. & Main, P. Improvement of macromolecular electron-denisty maps by the simultaneous application of real and reciprocal space constraints. Acta Crystallogr. D49, 148–157 (1993).

    CAS  Google Scholar 

  66. Brünger, A.T. X-PLOR, Version 3.1 Manual: A System for X-ray Crystallography and NMR (New Haven:Yale University Press, 1993).

    Google Scholar 

  67. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    CAS  Google Scholar 

  68. Cullis, A.F., Muirhead, H., Perutz, M.F., Rossmann, M.G. & North, A.C.T. The structure of haemoglobin. IX. A three-dimensional Fourier synthesis at 5.5 Å resolution: description of the structure. Proc Roy. Soc. Lond. A265, 161–187 (1962).

    Google Scholar 

  69. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Momany, C., Kovari, L., Prongay, A. et al. Crystal structure of dimeric HIV-1 capsid protein. Nat Struct Mol Biol 3, 763–770 (1996). https://doi.org/10.1038/nsb0996-763

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0996-763

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing