Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The DNA-binding domain of HIV-1 integrase has an SH3-like fold

Abstract

We have determined the solution structure of the DNA-binding domain of HIV-1 integrase by nuclear magnetic resonance spectroscopy. In solution, this carboxy-terminal region of integrase forms a homodimer, consisting of two structures that closely resemble Src-homology 3 (SH3) domains. Lys 264, previously identified by mutagenesis studies to be important for DNA binding of the integrase, as well as several adjacent basic amino acids are solvent exposed. The identification of an SH3-like domain in integrase provides a new potential target for drug design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Varmus, H.E. & Brown, P.O. in: Mobile DNA (eds Berg, D.E. & Howe, M.M.) 53–108 (American Society for Microbiology, Washington, D.C.; 1989).

    Google Scholar 

  2. Goff, S.P. Genetics of retroviral integration. A. Rev. Genet. 26, 527–544 (1992).

    Article  CAS  Google Scholar 

  3. Vink, C. & Plasterk, R.H.A. The human immunodeficiency virus integrase protein. Trends Genet. 9, 433–437 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Katz, R.A. & Skalka, A.M. The retroviral enzymes. A. Rev. Biochem. 63, 133–173 (1994).

    Article  CAS  Google Scholar 

  5. Withers-Ward, E.S., Kitamura, Y., Barnes, J.P. & Coffin, J.M. Distribution of targets for avian retrovirus DNA integration in vivo. Genes Dev. 8, 1473–1487 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Engelman, A. & Craigie, R. Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. J. Virol. 66, 6361–6369 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bushman, F.D., Engelman, A., Palmer, I., Wingfield, P. & Craigie, R. Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and zinc binding. Proc. natn. Acad. Sci. U.S.A. 90, 3428–3432 (1993).

    Article  CAS  Google Scholar 

  8. Vink, C., Oude Groeneger, A.A.M. & Plasterk, R.H.A. Identification of the catalytic and DNA-binding region of the human immunodeficiency virus type I integrase protein. Nucleic Acids Res. 21, 1419–1425 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van Gent, D.C., Vink, C., Oude Groeneger, A.A.M. & Plasterk, R.H.A. Complementation between HIV integrase proteins mutated in different domains. EMBO J. 12, 3261–3267 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Engelman, A., Bushman, F.D. & Craigie, R. Identification of discrete functional domains of HIV-1 integrase and their organization within an active multimeric complex. EMBO J. 12, 3269–3275 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burke, C.J. et al. Structural implications of spectroscopic characterization of a putative zinc finger peptide from HIV-1 integrase. J. biol. Chem. 267, 9639–9644 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. van Gent, D.C., Oude Groeneger, A.A.M. & Plasterk, R.H.A. Mutational analysis of the integrase protein of human immunodeficiency virus type 2. Proc. natn. Acad. Sci. U.S.A. 89, 9598–9602 (1992).

    Article  CAS  Google Scholar 

  13. Vincent, K.A., Ellison, V., Chow, S.A. & Brown, P.O. Characterization of human immunodeficiency virus type 1 integrase expressed in Escherichia coli and analysis of variants with amino-terminal mutations. J. Virol. 67, 425–437 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dyda, F. et al. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266, 1981–1986 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Yang, W. & Steitz, T.A. Recombining the structures of HIV integrase, RuvC and RNase H. Structure 3, 131–134 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Plasterk, R.H.A. The HIV integrase catalytic core. Nature struct. Biol. 2, 87–90 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Khan, E., Mack, J.P.G., Katz, R.A., Kulkosky, J. & Skalka, A.M. Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Res. 19, 851–860 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mumm, S.R. & Grandgenett, D.P. Defining nucleic acid-binding properties of avian retrovirus integrase by deletion analysis. J. Virol. 65, 1160–1167 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Woerner, A.M., Klutch, M., Levin, J.G. & Marcus-Sekura, C.J. Localization of DNA-binding activity of HIV-1 integrase to the C-terminal half of the protein. AIDS Res. Hum. Retr. 8, 297–304 (1992).

    Article  CAS  Google Scholar 

  20. Puras Lutzke, R.A., Vink, C. & Plasterk, R.H.A. Characterization of the minimal DNA-binding domain of the HIV integrase protein. Nucleic Acids Res. 22, 4125–4131 (1994).

    Article  Google Scholar 

  21. Nilges, M., Clore, G.M. & Gronenborn, A.M. Determination of three-dimensional structures of proteins from interproton distance data by dynamical simulated annealing from a random array of atoms-Circumventing problems associated with folding. FEBS Lett. 239, 129–136 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Brünger, A.T. X-PLOR, version 3.1: A system for X-ray crystallography and NMR (Yale University Press, New Haven, CT; 1992).

    Google Scholar 

  23. Musacchio, A., Noble, M., Pauptit, R., Wierenga, R. & Saraste, M. Crystal structure of a Src-homology 3 (SH3) domain. Nature 359, 851–855 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Yu, H. et al Solution structure of the SH3 domain of Src and identification of its ligand-binding site. Science 258, 1665–1668 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Kuriyan, J. & Cowburn, D. Structures of SH2 and SH3 domains. Curr. Opin. struct. Biol. 3, 828–837 (1993).

    Article  CAS  Google Scholar 

  26. Cohen, G.B., Ren, R. & Baltimore, D. Modular binding domains in signal transduction proteins. Cell 80, 237–248 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Wilson, K.P., Shewchuk, L.M., Brennan, R.G., Otsuka, A.J. & Matthews, B.W. Escherichia coli biotin holoenzyme synthetase / bio repressor crystal structure delineates the biotin- and DNA-binding domains. Proc. natn. Acad. Sci. U.S.A. 89, 9257–9261 (1992).

    Article  CAS  Google Scholar 

  28. Folkers, P.J.M., Folmer, R.H.A., Konings, R.N.H. & Hilbers, C.W. Overcoming the ambiguity problem encountered in the analysis of nuclear Overhauser magnetic resonance spectra of symmetric dimer proteins. J. Am. chem. Soc. 115, 3798–3799 (1993).

    Article  CAS  Google Scholar 

  29. Burgering, M.J.M., Boelens, R., Caffrey, M., Breg, J.N. & Kaptein, R. Observation of inter-subunit nuclear Overhauser effects in a dimeric protein - Application to the Arc repressor. FEBS Lett. 330, 105–109 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Folmer, R.H.A., Hilbers, C.W., Konings, R.N.H. & Hallenga, K.A. 20 13C double-filtered NOESY with strongly reduced artefacts and improved sensitivity. J. biomol. NMR 5, 427–432 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, W., Revington, M.J., Arrowsmith, C. & Kay, L.E. A pulsed field gradient isotope-filtered 3D 13C HMQC-NOESY experiment for extracting intermolecular NOE contacts in molecular complexes. FEBS Lett. 350, 87–90(1994).

    Article  CAS  PubMed  Google Scholar 

  32. Maignan, S. et al. Crystal structure of the mammalian Grb2 adaptor. Science 268, 291–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Feng, J.-A., Johnson, R.C. & Dickerson, R.E. Hin recombinase bound to DNA: the origin of specificity in major and minor groove interactions. Science 263, 348–355 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, T., DeRose, E.F. & Mullen, G.P. Determination of the structure of the DNA-binding domain of γδ resolvase in solution. Prot. Sci. 3, 1286–1295 (1994).

    Article  CAS  Google Scholar 

  35. Clubb, R.T. et al. A novel class of winged helix-turn-helix protein: the DNA-binding domain of Mu transposase. Structure 2, 1041–1048 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Baumann, H., Knapp, S., Lundbäck, Th., Ladenstein, R. & Härd, T. Solution structure and DNA-binding properties of a thermostable protein from archaeon Sulfolobus solfataricus. Nature struct. Biol. 1, 808–819 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Saksela, K., Cheng, G. & Baltimore, D. Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. EMBO J. 14, 484–491 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Murphy, J.E. & Goff, S.P. A mutation at one end of moloney murine leukemia virus DNA blocks cleavage of both ends by the viral integrase in vivo. J. Virol. 66, 5092–5095 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Matthews, S.J. & Leatherbarrow, R.J. The use of osmolytes to facilitate protein NMR spectroscopy. J. biomol. NMR 3, 597–600 (1993).

    Article  CAS  Google Scholar 

  40. Vis, H. et al. 1H, 13C and 15N resonance assignments and secondary structure analysis of the HU protein from Bacillus stearothermophilus using two- and three-dimensional double- and triple-resonance heteronuclear magnetic resonance spectroscopy. Biochemistry 33, 14858–14870 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Bax, A. & Grzesiek, S. Methodological advances in protein NMR. Acc. chem. Res. 26, 131–138 (1993).

    Article  CAS  Google Scholar 

  42. Clore, G.M. & Gronenborn, A.M. Multidimensional heteronuclear nuclear magnetic resonance of proteins. Meth. Enzymol. 239, 349–363 (1994).

    Article  CAS  Google Scholar 

  43. Kay, L.E., Keifer, P. & Saarinen, T. Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J. Am. chem. Soc. 114, 10663–10665 (1992).

    Article  CAS  Google Scholar 

  44. Nilges, M. A calculation strategy for the structure determination of symmetric dimers by 1H NMR. Proteins 17, 297–309 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. appl. Cryst. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  46. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  PubMed  Google Scholar 

  47. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. molec. Biol. 233, 123–138 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eijkelenboom, A., Puras Lutzke, R., Boelens, R. et al. The DNA-binding domain of HIV-1 integrase has an SH3-like fold. Nat Struct Mol Biol 2, 807–810 (1995). https://doi.org/10.1038/nsb0995-807

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0995-807

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing