Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solution structure of the DNA-binding domain of Drosophila heat shock transcription factor

Abstract

The solution structure of the DNA-binding domain of the Drosophila heat shock transcription factor, as determined by multidimensional multinuclear NMR, resembles that of the helix-turn-helix class of DNA-binding proteins. The domain comprises a four-stranded antiparallel β-sheet, packed against a three-helix bundle. The second helix is significantly distorted and is separated from the third helix by an extended turn which is subject to conformational averaging on an intermediate time scale. Helix 3 forms a classical amphipathic helix with polar and charged residues exposed to the solvent. Upon titration with DNA, resonance shifts in the backbone and Asn and Gln side-chain amides indicate that helix 3 acts as the recognition helix of the heat shock transcription factor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lindquist, S. & Craig, E.A. The heat-shock proteins. A. Rev. Genet. 22, 631–677 (1988).

    Article  CAS  Google Scholar 

  2. Morimoto, R.I., Tissieres, A. &. Georgopoulos, C. The stress response, function of the proteins, and perspectives. In Stress proteins in Biology and Medicine (Eds, Morimoto, R.I., Tissieres, A. & Georgopoulos, C.,). 1–36 (Cold Spring Harbor Laboratory Press, New York, 1990).

    Google Scholar 

  3. Hendrick, J.P. & Hartl, F.U. Molecular chaperone functions of heat-shock proteins. A. Rev. Biochem. 62, 349–384 (1993).

    Article  CAS  Google Scholar 

  4. Sorger, P.K. Heat shock factor and the heat shock response. Cell 65, 363–366 (1991).

    Article  CAS  Google Scholar 

  5. Lis, J.T. & Wu, C. Heat Shock Factor. In Transcriptional Regulation, (Eds, McKnight, S.L. & Yamamoto, K.R.,) 907–930 (Cold Spring Harbor Laboratory Press, New York, 1992).

    Google Scholar 

  6. Lis, J.T. & Wu, C. Protein traffic on the heat shock promoter: parking, stalling and trucking along. Cell, 74, 1–20 (1993).

    Article  CAS  Google Scholar 

  7. Kim, S.-J., Tsukiyama, T., Lewis, M.S. & Wu, C. The interaction of the DNA binding domain of Drosophila heat shock factor with its cognate DNA site: a thermodynamic analysis using analytical ultracentrifugation. Prot. Sci. 3, 1040–1051 (1994).

    Article  CAS  Google Scholar 

  8. Vuister, G.W., Kim, S.-J., Wu, C. & Bax, A. NMR evidence for similarities between the DNA-binding regions of Drosophila melanogaster heat shock factor and the helix-turn-helix and HNF3/fork head families of transcription factors. Biochemistry 33, 10–16 (1994).

    Article  CAS  Google Scholar 

  9. Vuister, G.W., Kim, S.-J., Wu, C. & Bax, A. 2D and 3D NMR study of phenylalanine residues in proteins by reverse isotopic labeling. J. Am. chem. Soc. (in the press).

  10. Nilges, M., Clore, G.M. & Gronenborn, A.M. Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. FEBS Lett. 229, 317–324 (1988).

    Article  CAS  Google Scholar 

  11. Brunger, A.T. X-PLOR Version 3.1: A System for X-ray Crystallography and NMR, Yale University, New Haven, CT, USA (1992).

    Google Scholar 

  12. Wüthrich, K. NMR of Proteins and Nucleic Acids, (John Wiley, New York, 1986).

    Book  Google Scholar 

  13. Harrison, C.J., Bohm, A.A. & Nelson, H.C.M. Crystral structure of the DNA binding domain of the heat shock transcription factor. Science 263, 224–227 (1994).

    Article  CAS  Google Scholar 

  14. Weber, I.T. & Steitz, T.A. Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 Å resolution. J. molec. Biol. 198, 311–326 (1987).

    Article  CAS  Google Scholar 

  15. Clark, K.L., Halay, E.D., Lai, E. & Burley, S.K. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364, 412–420 (1993).

    Article  CAS  Google Scholar 

  16. Perisic, O., Xiao, H. & Lis, J.T. Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell 59, 797–806 (1989).

    Article  CAS  Google Scholar 

  17. Fernandes, M., Xiao, H. & Lis, J.T. Fine structure analyses of the Drosophila and Saccharomyces heat shock factor – heat shock element interactions. Nucleic Acids Res. 22, 167–173 (1994).

    Article  CAS  Google Scholar 

  18. Harrison, S.C. A structural taxonomy of DNA-binding domains. Nature 353, 715–719 (1991).

    Article  CAS  Google Scholar 

  19. Dekker, N., Cox, M., Boelens, R., Verrijzer, C.P. var der Vliet, P.C. & Kaptein, R. Solution structure of the POU-specific DNA-binding domain of Oct-1. Nature 362, 852–855 (1993).

    Article  CAS  Google Scholar 

  20. Pabo, C.O., Aggarwal, A.K., Jordan, S.R., Beamer, L.J., Obeysekare, U.R. & Harrison, S.C. Conserved residues make similar contacts in two represser-operator complexes. Science 247, 1210–1213 (1990).

    Article  CAS  Google Scholar 

  21. Assa-Munt, N., Mortishire-Smith, R.J., Aurora, R., Herr, W. & Wright, P.E. The solution structure of the Oct-1 POU-specific domain reveals a striking similarity to the bacteriophage I repressor DNA-binding domain. Cell 73, 193–205 (1993).

    Article  CAS  Google Scholar 

  22. Clos, J. et al. Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell 63, 1085–1097 (1990).

    Article  CAS  Google Scholar 

  23. Clore, G.M. & Gronenborn, A.M. Applications of three- and four-dimensional heteronuclear NMR spectroscopy to protein structure determination. Progr. NMR Spectr. 23, 43–92 (1991).

    Article  CAS  Google Scholar 

  24. Bax, A., et al. Measurement of homo- and heteronuclear J couplings from quantitative J correlation. Meth. Enzymol., (Eds, James, T. L. & Oppenheimer, N.) 239 79–125 (Academic Press, San Diego, 1994).

    Google Scholar 

  25. Grzesiek, S. & Bax, A. The importance of not saturating H2O in protein NMR. Application to sensitivity enhancement and NOE measurements. J. Am. chem. Soc. 115, 12593–12594 (1993).

    Article  CAS  Google Scholar 

  26. Muhandiram, D.R., Xu, G.Y. & Kay, L.E. An enhanced-sensitivity pure absorption gradient 4D 13C-edited NOESY experiment. J. biomol. NMR 3, 463–470 (1993).

    Article  CAS  Google Scholar 

  27. Vuister, G.W. et al. Increased resolution and improved spectral quality in four-dimensional 13C/13C separated HMQC-NOESY-HMQC spectra using pulsed field gradients. J. magn. Reson. B 101, 210–213 (1993).

    Article  Google Scholar 

  28. Clore, G.M. et al. The three-dimensional structure of α1-purothionin in solution: combined use of nuclear magnetic resonance, distance geometry and restrained molecular dynamics. EMBO J. 5, 2729–2735 (1986).

    Article  CAS  Google Scholar 

  29. Wüthrich, K., Billeter, M. & Braun, W. Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J. molec. Biol. 169, 949–961 (1983).

    Article  Google Scholar 

  30. Clore, G.M., Gronenborn, A.M., Nilges, M. & Ryan, C.A. Three-dimensional structure of potato carboxypeptidase inhibitor in solution. A study using nuclear magnetic resonance, distance geometry, and restrained molecular dynamics. Biochemistry 26, 8012–8023 (1987).

    Article  CAS  Google Scholar 

  31. Huebel, A. & Schoeffl, F. Arabidopsis thaliana HSF gene sequence (submitted to the EMBL Data Library, November 1993).

    Google Scholar 

  32. Scharf, K.D., Rose, S., Zott, W., Schoef, F. & Nover, L. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. EMBO J. 9, 4495–4501 (1990).

    Article  CAS  Google Scholar 

  33. Jakobsen, B.K. & Pelham, H.R.B. A conserved heptapeptide restrains the activity of the yeast heat shock transcription factor. EMBO J. 10, 369–375 (1991).

    Article  CAS  Google Scholar 

  34. Sorger, P.K. & Pelham, H.R. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54, 855–864 (1988).

    Article  CAS  Google Scholar 

  35. Gallo, G.J., Prentice, H. & Kingston, R.E. Heat shock factor is required for growth at normal temperatures in the fission yeast Schizosaccharomyces pombe. Molec. cell. Biol. 13, 749–761 (1993).

    Article  CAS  Google Scholar 

  36. Nakai, A. & Morimoto, R.I. Characterization of a novel chicken heat shock transcription factor 3, suggests a new regulatory pathway. Molec. cell. Biol. 13, 1983–1997 (1993).

    Article  CAS  Google Scholar 

  37. Sarge, K.D., Zimarino, V., Holm, K., Wu, C. & Morimoto, R.I. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA binding ability. Genes Dev. 5, 1902–1911 (1991).

    Article  CAS  Google Scholar 

  38. Rabindran, S.K., Giorgi, G., Clos, J. & Wu, C. Molecular cloning and expression of a human heat shock factor, HSF1. Proc. natn. Acad. Sci. U.S.A. 88, 6906–6910 (1991).

    Article  CAS  Google Scholar 

  39. Schuetz, T.J., Sheldon, L., Gallo, G.J., Tempst, P. & Kingston, R.E. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc. natn. Acad. Sci. U.S.A. 88, 6911–6915 (1991).

    Article  CAS  Google Scholar 

  40. Higgins, D.G. & Sharp, P.M. Fast and sensitive multiple sequence alignments on a microcomputer. Cabios Comm. 5, 151–153 (1989).

    CAS  Google Scholar 

  41. Carson, M. Ribbon models for macromolecules. J. molec. Graphics 5, 103–106 (1987).

    Article  CAS  Google Scholar 

  42. Brooks, B.R. et al. CHARMM: a program for macromolecular energy, minimization and dynamics calculations. J. comput. Chem. 74, 187–217 (1983).

    Article  Google Scholar 

  43. Schultz, S.C., Shields, G.C. & Steitz, T.A. Crystal structure of CAP-DNA is bent by 90°. Science 253, 1001–1007 (1991).

    Article  CAS  Google Scholar 

  44. Klemm, J.D., Rould, M.A., Aurora, R., Herr, W. & Pabo, C.O. Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules. Cell 77, 21–32 (1994).

    Article  CAS  Google Scholar 

  45. Beamer, L.J. & Pabo, C.O. Refined 1.8 Å crystal structure of the λ repressor-operator complex. J. molec. Biol. 227, 177–196 (1992).

    Article  CAS  Google Scholar 

  46. Aggarwal, A.K., Rodgers, D.W., Drottar, M., Ptashne, M. & Harrison, S.C. Recognition of a DNA operator by the repressor of phage 434: a view at high resolution. Science 242, 899–907 (1988).

    Article  CAS  Google Scholar 

  47. Mondragon, A. & Harrison, S.C. The phage 434 Cro/Or1 complex at 2.5 Å resolution. J. molec. Biol. 219, 321–334 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vuister, G., Kim, SJ., Orosz, A. et al. Solution structure of the DNA-binding domain of Drosophila heat shock transcription factor. Nat Struct Mol Biol 1, 605–614 (1994). https://doi.org/10.1038/nsb0994-605

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0994-605

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing