The domain structure of the ion channel-forming protein colicin Ia

Abstract

Colicin Ia undergoes a transition from a soluble to a transmembrane state, forming an ion channel to effect its bactericidal activity. The X-ray crystal structure of soluble colicin Ia at an effective resolution of 4 Å reveals that the molecule is highly α-helical and has an unusually elongated ‘Y’-shape. The stalk and two arms of the ‘Y’ form three discrete structural domains which most likely correspond to the three functional regions identified for the channel-forming colicins. The channel-forming region of colicin Ia can be located to the larger of the two arms, the insertion domain, by its structural similarity to the ten α-helix motif found for the ion channel-forming fragments of colicins A and E1. The domain arrangement found in this structure provides novel insights into the mechanism of membrane insertion of colicin Ia.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Pugsley, A.P. Obligatory coupling of colicin release and lysis in mitomycin-treated Col+Escherichia coli J. gen. Microbiol. 129, 1921–1928 (1983).

  2. 2

    Bowles, L.K., Miguel, A.G. & Konisky, J. Purification of the colicin I receptor. J. biol. Chem. 258, 1215–1220 (1983).

  3. 3

    Griggs, D.W., Tharp, B.B. & Konisky, J. Cloning and promoter identification of the iron-regulated cir gene of Escherichia coli. J. Bacteriol. 169, 5343–5352 (1987).

  4. 4

    Nogueira, R.A. & Varanda, W.A. Gating properties of channels formed by colicin Ia in planar lipid bilayer membranes. J. Membrane Biol. 105, 143–153 (1988).

  5. 5

    Tokuda, H. & Konisky, J. Mode of action of colicin Ia: Effect of colicin on the Escherichia coli proton electrochemical gradient. Proc. natn. Acad. Sci. U.S.A. 75, 2579–2583 (1978).

  6. 6

    Tokuda, H. & Konisky, J. Effects of colicins Ia and E1 on permeability of liposomes. Proc. natn. Acad. Sci. U.S.A. 76, 6167–6171 (1979).

  7. 7

    Cramer, W.A., Cohen, F.S., Merrill, A.R. & Song, H.Y. Structure and dynamics of the colicin E1 channel. Molec. Microbiol. 4, 519–526 (1990).

  8. 8

    Pattus, F. et al. Colicins: Prokaryotic killer-pores. Experientia 46, 180–192 (1990).

  9. 9

    Donovan, J.J., Simon, M.I., Draper, R. & Montal, M. Diphtheria toxin forms transmembrane channels in planar lipid bilayers. Proc. natn. Acad. Sci. U.S.A. 78, 172–176 (1981).

  10. 10

    Holmgren, J. Actions of cholera toxin and the prevention and treatment of cholera. Nature 292, 413–417 (1981).

  11. 11

    Young, J.D.-E., Cohn, Z.A. & Podack, E.R. The ninth component of complement and the pore-forming protein (perforin 1) from cytotoxic T cells: Structural, immunological, and functional similarities. Science 233, 184–190 (1986).

  12. 12

    Wilson, A.J.C. The probability distribution of X-ray intensities. Acta crystallogr. 2, 318–321 (1949).

  13. 13

    Wang, B.C. Resolution of phase ambiguity in macromolecular crystallography. Meth. Enzymol. 115, 90–112 (1985).

  14. 14

    Choe, S., Konisky, J. & Stroud, R.M. Structure of a channel-forming colicin Ia. Biophys. J. 51, 249a (1987).

  15. 15

    Mel, S.F. & Stroud, R.M. Colicin Ia inserts into negatively charged membranes at low pH with a tertiary but little secondary structural change. Biochemistry 32, 2082–2089 (1993).

  16. 16

    Jones, T.A. & Thirrup, S. Using know substructures in protein model building and crystallography. EMBO J. 5, 819–822 (1986).

  17. 17

    Konisky, J. & Richards, F.M. Characterization of colicin Ia and colicin Ib: Purification and some physical properties. J. biol. Chem. 245, 2972–2978 (1970).

  18. 18

    Schwartz, S.A. & Helinski, D.R. Purification and characterization of colicin E1. J. biol. Chem. 246, 6318–6327 (1971).

  19. 19

    Benedetti, H., Lloubès, R., Lazdunski, C. & Letellier, L. Colicin A unfolds during its translocation in Escherichia coli cells and spans the whole cell envelope when its pore has formed. EMBO J. 11, 441–447 (1992).

  20. 20

    Ohno-Iwashita, Y. & Imahori, K. Assignment of the functional loci in the colicin E1 molecule by characterization of its proteolytic fragments. J. biol. Chem. 257, 6446–6451 (1982).

  21. 21

    Carmen Martinez, M., Lazdunski, C. & Pattus, F. Isolation, molecular and functional properties of the C-terminal domain of colicin A. EMBO J. 2, 1501–1507 (1983).

  22. 22

    Baty, D. et al. Functional domains of colicin A. Molec. Microbiol. 2, 807–811 (1988).

  23. 23

    Baty, D., Lakey, J., Pattus, F. & Lazdunski, C. A 136-amino-acid-residue COOH-terminal fragment of colicin A is endowed with ionophoric activity. Eur. J. Biochem. 189, 409–413 (1990).

  24. 24

    Cleveland, M.v., Slatin, S., Finkelstein, A. & Levinthal, C. Structure-function relationships for a voltage-dependent ion channel: Properties of COOH-terminal fragments of colicin E1. Proc. natn. Acad. Sci. U.S.A. 80, 3706–3710 (1983).

  25. 25

    Ghosh, P., Mel, S.F. & Stroud, R.M. A carboxy-terminal fragment of colicin Ia forms ion channels. J. Membrane Biol. 134, 85–92 (1993).

  26. 26

    Parker, M.W., Pattus, F., Tucker, A.D. & Tsernoglou, D. Structure of the membrane-pore-forming fragment of colicin A. Nature 337, 93–96 (1989).

  27. 27

    Parker, M.W.M., Postma, J.P., Pattus, F., Tucker, A.D. & Tsernoglou, D. Refined structure of the pore-forming domain of colicin A at 2.4 Å resolution. J. molec. Biol. 224, 639–657 (1992).

  28. 28

    Wormald, M.R., Merrill, A.R., Cramer, W.A. & Williams, R.J.P. Solution NMR studies of colicin E1 C-terminal thermolytic peptide: Structural comparison with colicin A and the effects of pH changes. Eur. J. Biochem. 191, 155–161 (1990).

  29. 29

    Shin, Y.-K., Levinthal, C., Levinthal, F. & Hubbell, W.L. Colicin E1 binding to membranes: Time-resolved studies of spin-labeled mutants. Science 259, 960–963 (1993).

  30. 30

    Merrill, A.R. & Cramer, W.A. Identification of a voltage-responsive segment of the potential-gated colicin E1 ion channel. Biochemistry 29, 8529–8534 (1990).

  31. 31

    Mel, S.F., Falick, A.M., Burlingame, A.L. & Stroud, R.M. Mapping a membrane-associated conformation of colicin Ia. Biochemistry 32, 9473–9479 (1993).

  32. 32

    Benedetti, H., Lazdunski, C. & Lloubès, R. Protein Import into Escherichia coli: Colicins A and E1 Interact with a Component of their Translocation System. EMBO J. 10, 1989–1995 (1991).

  33. 33

    Frenette, M. et al. Interaction of colicin A domains with phospholipid monolayers and liposomes: Relevance to the mechanism of action. Biochemistry 28, 2509–2514 (1989).

  34. 34

    Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).

  35. 35

    Mankovich, J.A., Hsu, C. & Konisky, J. DNA and amino acid sequence analysis of structural and immunity genes of colicins Ia and Ib. J. Bacteriol. 168, 228–236 (1986).

  36. 36

    Ghosh, P. The structure and function of colicin Ia. Thesis, University of California, San Francisco (1992).

  37. 37

    Maniatis, T., Fritsch, E.F. & Sambrook, J. Molecular Cloning (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1982).

  38. 38

    Richardson, H., Emslie-Smith, A.H. & Senior, B.W. Agar diffusion method for the assay of colicins. Appl. Microbiol. 16, 1468–1474 (1968).

  39. 39

    Terwilliger, T.C., Kim, S.-H. & Eisenberg, D. Generalized method of determining heavy-atom positions using the difference Patterson function. Acta crystallogr. A43, 1–5 (1987).

  40. 40

    Terwilliger, T.C., Kim, S.-H. & Eisenberg, D. Isomorphous relacement: Effects of errors on the phase probability distribution. Acta crystallogr. A43, 6–13 (1987).

  41. 41

    Vaughan, P.A., Sturdivant, J.H. & Pauling, L. The determination of the structure of complex molecules and ions from X-ray diffraction by their solutions: The structures of the groups PtBr6, PtCl6, Nb6Cl12++, Ta6Br12++, and Ta6Cl12++. J. Am. chem. Soc. 72, 5477–5486 (1950).

  42. 42

    Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta crystallogr. A47, 110–119 (1991).

  43. 43

    Carson, M. Ribbons 2.0. J. appl. Crystallogr. 24, 958–961 (1991).

  44. 44

    Ferrin, T.E., Huang, C.C., Jarvis, L.E. & Langridge, R. The MIDAS display system. J. molec. Graphics 6, 13–27 (1988).

  45. 45

    Huang, C.C., Pettersen, E.F., Klein, T.E., Ferrin, T.E. & Langridge, R. Conic: A fast renderer for space-filling molecules with shadows. J. molec. Graphics 9, 230–236 (1991).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading