Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a pertussis toxin–sugar complex as a model for receptor binding

Abstract

Pertussis toxin is an exotoxin from the bacterium Bordetella pertussis which is important the pathogenesis of whooping cough and the generation of a protective immune response. The diverse biological activities of the toxin depend on its ability to recognize carbohydrate-containing receptors on a wide variety of eukaryotic cells. We present here the crystal structure of pertussis toxin complexed with a soluble oligosaccharide from transferrin. Binding sites for the terminal sialic acid–galactose moiety are revealed on both subunits S2 and S3 of the B-oligomer. Identification of amino acid residues involved in receptor binding will improve the design of genetically inactivated toxins for use in new acellular whooping cough vaccines

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Munoz, J.J., Arai, H., Bergman, R.K. & Sadowski, P.L. Biological activities of crystalline pertussigen from Bordetella pertussis. Infect. Immun. 33, 820–826 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Armstrong, G.D., Howard, L.A. & Peppler, M.S. Use of glycosyltransferases to restore pertussis toxin receptor activity to asialogalactofetuin. J. biol. Chem. 263, 8677–8684 (1988).

    CAS  PubMed  Google Scholar 

  3. Brennan, M.J., David, J.L., Kenimer, J.G. & Manclark, C.R. Lectin-like binding of pertussis toxin to a 165-kilodalton Chinese hamster ovary cell glycoprotein. J. biol. Chem. 263, 4895–4899 (1988).

    CAS  PubMed  Google Scholar 

  4. Witvliet, M.H., Burns, D.L., Brennan, M.J., Poolman, J.T. & Manclark, C.R. Binding of pertussis toxin to eukaryotic cells and glycoproteins. Infect. Immun. 57, 3324–3330 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Clark, C.G. & Armstrong, G.D. Lymphocyte receptors for pertussis toxin. Infect. Immun. 58, 3840–3846 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Heerze, L.D., Chong, P.C.S. & Armstrong, G.D. Investigation of the lectin-like binding domains in pertussis toxin using synthetic peptide sequences. J. biol. Chem. 267, 25810–25815 (1992).

    CAS  PubMed  Google Scholar 

  7. Saukkonen, K., Burnette, W.N., Mar, V.L., Masure, H.R. & Tuomanen, E.I. Pertussis toxin has eukaryotic-like carbohydrate recognition domains. Proc. natn. Acad. Sci. U.S.A. 89, 118–122 (1992).

    Article  CAS  Google Scholar 

  8. van't Wout, J., et al. Role of carbohydrate recognition domains of pertussis toxin in adherence of Bordetella pertussis to human macrophages. Infect. Immun. 60, 3303–3308 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Stein, P.E. et al. The crystal structure of pertussis toxin. Structure 2, 45–57 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Weis, W.I., Kahn, R., Fourme, R., Drickamer, K. & Hendrickson, W.A. Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science 254, 1608–1615 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Graves, B.J. et al. Insight into E-selectin/ligand interaction from the crystal structure and mutagenesis of the lec/EGF domains. Nature 367, 532–538 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Murzin, A.G. OB (oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J. 12, 861–867 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Spik, G. et al. Studies on glycoconjugates. LXIV. Complete structure of two carbohydrate units of human serotransferrin. FEBS Lett. 50, 296–299 (1975).

    Article  CAS  PubMed  Google Scholar 

  14. Breg, J., Kroon-Batenburg, L.M.J., Strecker, G., Montreuil, J. & Vliegenthart, J.F.G. Conformational analysis of the sialylα(2→3/6)N-acetyllactosamine structural element occurring in glycoproteins by two-dimensional NOE 1H-NMR spectroscopy in combination with energy calculations by hard-sphere exo-anomeric and molecular mechanics force-field with hydrogen-bonding potential. Eur. J. Biochem. 178, 727–739 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Spangler, B.D., Heerze, L.D., Clark, C.G. & Armstrong, G.D. Hydrophobic binding of pertussis toxin is enhanced by oligosaccharide receptors. Arch. Biochem. Biophys. 305, 153–158 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Shigeta, R., Forest, K., Yan, L., Kahne, D. & Schutt, C.E. Isomorphous binding of mercury-substituted thiosaccharides to pertussis toxin crystals yields crystallographic phases. Acta crystallogr. D50, 71–74 (1994).

    CAS  Google Scholar 

  17. Merritt, E.A. et al. Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Prot. Sci. 3, 166–175 (1994).

    Article  CAS  Google Scholar 

  18. Sixma, T.K. et al. Lactose binding to heat-labile enterotoxin revealed by X-ray crystallography. Nature 355, 561–564 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Armstrong, G.D. & Peppler, M.S. Maintenance of biological activity of pertussis toxin radioiodinated while bound to fetuin-agarose. Infect. Immun. 55, 1294–1299 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lobet, Y. et al. Site-specific alterations in the B-oligomer that affect receptor-binding activities and mitogenicity of pertussis toxin. J. exp. Med. 177, 79–87 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Loosmore, S. et al. Characterization of pertussis toxin analogs containing mutations in the B-oligomer subunits. Infect. Immun. 61, 2316–2324 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Weis, W.I., Drickamer, K. & Hendickson, W.A. Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature 360, 127–134 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Sato, Y., Sato, H., Tiru, M. & Brown, F. Pertussis: evaluation and research on acellular pertussis vaccines (Karger, Basel, 1991).

    Google Scholar 

  24. Hewlett, E.L. & Cowell, J.L. Evaluation of the mouse model for study of encehalopathy in pertussis vaccine recipients. Infect. Immun. 57, 661–663 (1981).

    Google Scholar 

  25. Burnette, W.N. et al. Pertussis toxin S1 mutant with reduced enzyme activity and a conserved protective epitope. Science 242, 72–74 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Pizza, M., Bartoloni, A., Prugnola, A., Silvestri, S. & Rappuoli, R. Subunit S1 of pertussis toxin: mapping of the regions essential for ADP-ribosyltransferase activity. Proc. natn. Acad. Sci. U.S.A. 85, 7521–7525 (1988).

    Article  CAS  Google Scholar 

  27. Loosmore, S.M. et al. Engineering of genetically detoxified pertussis toxin analogs for development of a recombinant whooping cough vaccine. Infect. Immun. 58, 3653–3662 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nencioni, L. et al. Characterization of genetically inactivated pertussis toxin mutants: candidates for a new vaccine against whooping cough. Infect. Immun. 58, 1308–1315 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kimura, A., Mountzouros, K.T., Schad, P.A., Cieplak, W. & Cowell, J.L. Pertussis toxin analog with reduced enzymatic and biological activities is a protective antigen. Infect. Immun. 58, 3337–3347 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sakabe, N. A focusing Weissenberg camera with multi-layer-line screens for macromolecular crystallography. J. appl. Crystallogr. 16, 542–547 (1983).

    Article  CAS  Google Scholar 

  31. Higashi, T. The processing of diffraction data taken on a screenless Weissenberg camera for macromolecular crystallography. J. appl. Crystallogr. 22, 9–18 (1989).

    Article  CAS  Google Scholar 

  32. Brünger, A.T., Kuriyan, J. & Karplus, M. Crystallographic R-factor refinement by molecular graphics. Science 235, 458–460 (1987).

    Article  PubMed  Google Scholar 

  33. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta crystallogr. A42, 140–149 (1986).

    Article  CAS  Google Scholar 

  34. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  35. Weis, W.I., Brünger, A.T., Skehel, J.J. & Wiley, D.C. Refinement of the influenza virus haemagglutinin by simulated annealing. J. molec. Biol. 212, 737–761 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of proteins. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stein, P., Boodhoo, A., Armstrong, G. et al. Structure of a pertussis toxin–sugar complex as a model for receptor binding. Nat Struct Mol Biol 1, 591–596 (1994). https://doi.org/10.1038/nsb0994-591

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0994-591

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing