Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the rgRGS domain of p115RhoGEF

Abstract

p115RhoGEF, a guanine nucleotide exchange factor for Rho GTPase, is also a GTPase activating protein (GAP) for G12 and G13 heterotrimeric Gα subunits. Near its N-terminus, p115RhoGEF contains a domain (rgRGS) with remote sequence identity to RGS (regulators of G protein signaling) domains. The rgRGS domain is necessary but not sufficient for the GAP activity of p115RhoGEF. The 1.9 Å resolution crystal structure of the rgRGS domain shows structural similarity to RGS domains but possesses a C-terminal extension that folds into a layer of helices that pack against the hydrophobic core of the domain. Mutagenesis experiments show that rgRGS may form interactions with Gα13 that are analogous to those in complexes of RGS proteins with their Gα substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the rgRGS domain of p115RhoGEF.
Figure 2: Structural comparison of RGS and rgRGS domains.
Figure 3: A model of the rgRGS–Gα13 complex.
Figure 4: GAP activity of p115RhoGEF rgRGS domain mutants towards Gα13.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Cerione, R.A. & Zheng, Y. Curr. Opin. Cell. Biol. 8, 216–222 (1996).

    Article  CAS  Google Scholar 

  2. Lemmon, M.A. & Ferguson, K.M. Curr. Top. Microbiol. Immunol. 228, 39–74 (1998).

    CAS  PubMed  Google Scholar 

  3. Hart, M.J. et al. Science 280, 2112–2114 (1998).

    Article  CAS  Google Scholar 

  4. Whitehead, I.P. et al. J. Biol. Chem. 271, 18643–18650 (1996).

    Article  CAS  Google Scholar 

  5. Kourlas, P.J. et al. Proc. Natl. Acad. Sci. USA 97, 2145–2150 (2000).

    Article  CAS  Google Scholar 

  6. Fukuhara, S., Murga, C., Zohar, M., Igishi, T. & Gutkind, J.S. J. Biol. Chem. 274, 5868–5879 (1999).

    Article  CAS  Google Scholar 

  7. Jackson, M. et al. Nature 410, 89–93 (2001).

    Article  CAS  Google Scholar 

  8. Kozasa, T. et al. Science 280, 2109–2111 (1998).

    Article  CAS  Google Scholar 

  9. Ross, E.M. & Wilkie, T.M. Annu. Rev. Biochem. 69, 795–827 (2000).

    Article  CAS  Google Scholar 

  10. Berman, D.M., Kozasa, T. & Gilman, A.G. J. Biol. Chem. 271, 27209–27212 (1996).

    Article  CAS  Google Scholar 

  11. Tesmer, J.J.G., Berman, D.M., Gilman, A.G. & Sprang, S.R. Cell 89, 251–261 (1997).

    Article  CAS  Google Scholar 

  12. Slep, K.C. et al. Nature 409, 1071–1077 (2001).

    Article  CAS  Google Scholar 

  13. Wells, C.D. et al. J. Biol. Chem. in the press (2001).

  14. de Alba, E., De Vries, L., Farquhar, M.G. & Tjandra, N. J. Mol. Biol. 291, 927–939 (1999).

    Article  CAS  Google Scholar 

  15. Spink, K.E., Polakis, P. & Weis, W.I. EMBO J. 19, 2270–2279 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  16. Srinivasa, S.P., Watson, N., Overton, M.C. & Blumer, K.J. J. Biol. Chem. 273, 1529–1533 (1998).

    Article  CAS  Google Scholar 

  17. Natochin, M., McEntaffer, R.L. & Artemyev, N.O. J. Biol. Chem. 273, 6731–6735 (1998).

    Article  CAS  Google Scholar 

  18. Posner, B.A., Mukhopadhyay, S., Tesmer, J.J., Gilman, A.G. & Ross, E.M. Biochemistry 38, 7773–7779 (1999).

    Article  CAS  Google Scholar 

  19. Yang, W., Hendrickson, W.A., Kalman, E.T. & Crouch, R.J. J. Biol. Chem. 265, 13553–13559 (1990).

    CAS  PubMed  Google Scholar 

  20. Otwinowski, Z. In Data collection and processing (eds Sawyer, N.I.L. & Bailey, S.W.) 56–62 (Science and Engineering Council Daresbury Laboratory, Daresbury, U.K.; 1993).

    Google Scholar 

  21. Terwilliger, T.C. & Berendzen, J. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  22. Collaborative computational project, N. Acta Crystallogr. D 50, 760–763 (1994).

  23. Jones, T.A. & Kjeldgaard, M. O Version 5.9 (Uppsala University, Uppsala; 1995).

  24. Brunger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  25. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  26. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  27. Berman, H.M. et al. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  28. Guex, N., Diemand, A. & Peitsch, M.C. Trends Biochem. Sci. 24, 364–367 (1999).

    Article  CAS  Google Scholar 

  29. Van Gunsteren, W.F. http://igc.ethz.ch/gromos (1996).

  30. Singer, W.D., Miller, R.T. & Sternweis, P.C. J. Biol. Chem. 269, 19796–19802 (1994).

    CAS  PubMed  Google Scholar 

  31. Wells, C.W., Jiang, X. & Sternweis, P.C. Methods Enzymol. 345, in the press (2001).

    Google Scholar 

  32. Esser, L. http://www.hhmi.swmed.edu/external/Doc/glr/ (2000).

  33. Esnouf, R. J. Mol. Graph. 15, 133–138 (1997).

    Google Scholar 

  34. The POV-ray Team. http://www.povray.org (1998).

  35. Thompson, J.D., Higgins, D.G. & Gibson, T.J. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Loew and T. Xiao for their assistance with data collection and MAD data analysis in addition to their guidance in structure refinement; S. Raghunathan, X. Du and K. Ihara for useful discussions; S. Gutowski for excellent technical assistance with GAP assays; and the staff of MacCHESS and ALS. This work is supported by NIH grants to S.R.S, P.C.S and C.D.W, and Welch Foundation grants to S.R.S and P.C.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Sprang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Wells, C., Sternweis, P. et al. Structure of the rgRGS domain of p115RhoGEF. Nat Struct Mol Biol 8, 805–809 (2001). https://doi.org/10.1038/nsb0901-805

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0901-805

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing