Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure is lost incrementally during the unfolding of barstar

Abstract

Coincidental equilibrium unfolding transitions observed by multiple structural probes are taken to justify the modeling of protein unfolding as a two-state, N U, cooperative process. However, for many of the large number of proteins that undergo apparently two-state equilibrium unfolding reactions, folding intermediates are detected in kinetic experiments. The small protein barstar is one such protein. Here the two-state model for equilibrium unfolding has been critically evaluated in barstar by estimating the intramolecular distance distribution by time-resolved fluorescence resonance energy transfer (TR-FRET) methods, in which fluorescence decay kinetics are analyzed by the maximum entropy method (MEM). Using a mutant form of barstar containing only Trp 53 as the fluorescence donor and a thionitrobenzoic acid moiety attached to Cys 82 as the fluorescence acceptor, the distance between the donor and acceptor has been shown to increase incrementally with increasing denaturant concentration. Although other probes, such as circular dichroism and fluorescence intensity, suggest that the labeled protein undergoes two-state equilibrium unfolding, the TR-FRET probe clearly indicates multistate equilibrium unfolding. Native protein expands progressively through a continuum of native-like forms that achieve the dimensions of a molten globule, whose heterogeneity increases with increasing denaturant concentration and which appears to be separated from the unfolded ensemble by a free energy barrier.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FRET measurement of distance and stability.
Figure 2: Equilibrium unfolding curves.
Figure 3: Fluorescence lifetime distributions of labeled protein.
Figure 4: Fluorescence lifetime distributions of N-like and U-like forms.
Figure 5: Denaturant-dependence of the separation and width of the distribution of distances between Trp 53 and Cys 82-TNB in N-like forms.

Similar content being viewed by others

References

  1. Tanford, C. Adv. Protein Chem. 21, 1–95 (1970).

    Google Scholar 

  2. Jackson, S.E. & Fersht, A.R. Biochemistry 30, 10428–10435 (1991).

    Article  CAS  Google Scholar 

  3. Plaxco, K.W., Simons, K.T., Ruczinski, I. & Baker, D. Biochemistry 39,11177–11183 (2000).

    Article  CAS  Google Scholar 

  4. Dobson, C.M., Sali, A. & Karplus, M. Angew. Chem. Int. Ed. 37, 868–893 (1998).

    Article  Google Scholar 

  5. Chan, H.S. & Dill, K.A. Proteins 30, 2–33 (1998).

    Article  CAS  Google Scholar 

  6. Swaminathan, R., Nath, U., Udgaonkar, J.B., Periasamy, N. & Krishnamoorthy, G. Biochemistry 35, 9150–9157 (1996a).

    Article  CAS  Google Scholar 

  7. Tcherkasskaya, O., Knutson, J.R., Bowley, S.A., Frank, M.K. & Gronenborn, A.M. Biochemistry 39, 11216–11226 (2000).

    Article  CAS  Google Scholar 

  8. Lillo, M.P., Beechem, J.M., Szpikowska, B.K., Sherman, M.A. & Mas, M.T. Biochemistry 36, 11261–11272 (1997).

    Article  CAS  Google Scholar 

  9. Deniz, A.A et al. Proc. Natl. Acad. Sci. USA 97, 5179–5184 (2000).

    Article  CAS  Google Scholar 

  10. Shih, W.M., Gryczynski, Z., Lakowicz, J.R. & Spudich, J.A. Cell 102, 683–694 (2000).

    Article  CAS  Google Scholar 

  11. Talaga, D.S. et al. Proc. Natl. Acad. Sci. USA 97, 13021–13026 (2000).

    Article  CAS  Google Scholar 

  12. Skilling, J. & Bryan, R.K. Mon. Not. R. Astr. Soc. 211, 111–124 (1984).

    Article  Google Scholar 

  13. Brochon, J.C. Methods Enzymol. 240, 262–311 (1994).

    Article  CAS  Google Scholar 

  14. Swaminathan, R. & Periasamy, N. Proc. Indian Acad. Sci. Chem. Sci. 108, 39–49 (1996).

    CAS  Google Scholar 

  15. Agashe, V.R., Shastry, M.C. & Udgaonkar, J.B. Nature 377, 754–757 (1995).

    Article  CAS  Google Scholar 

  16. Shastry, M.C. & Udgaonkar, J.B. J. Mol. Biol. 247, 1013–1027 (1995).

    Article  CAS  Google Scholar 

  17. Zaidi, F.N., Nath, U. & Udgaonkar, J.B. Nature Struct. Biol. 4, 1016–1024 (1997).

    Article  CAS  Google Scholar 

  18. Nolting, B. et al. Proc. Natl. Acad. Sci. USA 94, 826–830 (1997).

    Article  CAS  Google Scholar 

  19. Sridevi, K., Juneja, J., Bhuyan, A.K., Krishnamoorthy, G. & Udgaonkar, J.B. J. Mol. Biol. 302, 479–495 (2000).

    Article  CAS  Google Scholar 

  20. Agashe, V.R. & Udgaonkar, J.B. Biochemistry 34, 3286–3299 (1995).

    Article  CAS  Google Scholar 

  21. Khurana R., Hate A.T., Nath, U. & Udgaonkar, J.B. Protein Sci. 4, 1133–1144 (1995).

    Article  CAS  PubMed Central  Google Scholar 

  22. Ramachandran, S. & Udgaonkar, J.B. Biochemistry 35, 8776–8785 (1996).

    Article  CAS  Google Scholar 

  23. Nath, U. & Udgaonkar, J.B. Biochemistry 34, 1702–1713 (1995).

    Article  CAS  Google Scholar 

  24. Wu, P. & Brand, L. Biochemistry 33, 10457–10462 (1994).

    Article  CAS  Google Scholar 

  25. Cantor, C.R. & Schimmel, P.R. In Biophysical chemistry 451–454 (W. H. Freeman & Co., New York; 1980).

    Google Scholar 

  26. Lakowicz, J.R. In Principles of fluorescence spectroscopy 2nd edn 371–376 (Plenum Press, New York; 1999).

    Book  Google Scholar 

  27. Lubienski, M.J., Bycroft, M., Freund, S.M. & Fersht, A.R. Biochemistry 33, 8866–8877 (1994).

    Article  CAS  Google Scholar 

  28. Wong, K.-B. & Daggett, V. Biochemistry 37, 11182–11192 (1998).

    Article  CAS  Google Scholar 

  29. Dale, R.E., Eisinger, J. & Blumberg, W.E. Biophys. J. 26, 161–194 (1979).

    Article  CAS  PubMed Central  Google Scholar 

  30. Navon, A., Ittah, V., Landsman, P. Scheraga, H.A. & Haas, E. Biochemistry 40, 105–118 (2001).

    Article  CAS  Google Scholar 

  31. Ruggiero, A.J., Todd, D.C. & Flemming, G.R. J. Am. Chem. Soc. 112, 1003–1014 (1990).

    Article  CAS  Google Scholar 

  32. Hansen, J.E., Rosenthal, S.J. & Fleming, G.R. J. Phys. Chem. 96, 3034–3040 (1992).

    Article  CAS  Google Scholar 

  33. Lakowicz, J.R. et al. Biochemistry 27, 9149–9160 (1988).

    Article  CAS  Google Scholar 

  34. Haas, E., Katchalski-Katzir, E. & Steinberg, I.Z. Biochemistry 17, 5064–5070 (1978).

    Article  CAS  Google Scholar 

  35. Dos Remedios, C.G. & Moens, P.D.J. J. Struct. Biol. 115, 175–185 (1995).

    Article  CAS  Google Scholar 

  36. Ishima, R. & Torchia, D.A. Nature Struct. Biol., 7, 740–743 (2000).

    Article  CAS  Google Scholar 

  37. Beechem J.M. & Haas, E. Biophys J. 55, 1225–1236 (1989).

    Article  CAS  PubMed Central  Google Scholar 

  38. Eis, P.S. & Lakowicz, J.R. Biochemistry 32, 7981–7993 (1993).

    Article  CAS  Google Scholar 

  39. Dill, K.A. & Shortle, D. Annu. Rev. Biochem. 60, 795–825 (1991).

    Article  CAS  Google Scholar 

  40. Ptitsyn, O.B. In Protein Folding (ed. Creighton, T.E.) 243–300 (W.H. Freeman & Co., New York; 1992).

    Google Scholar 

  41. Klimov, D.K. & Thirumalai, D. Proc. Natl. Acad. Sci. USA, 97, 2544–2549 (2000).

    Article  CAS  Google Scholar 

  42. Englander, S.W. Annu. Rev. Biophys. Biomol. Struct. 29, 213–238 (2000).

    Article  CAS  Google Scholar 

  43. Smith, C.K. et al. Protein Sci. 5, 2009–2019 (1996).

    Article  CAS  PubMed Central  Google Scholar 

  44. Plaxco K.W. et al. Biochemistry 37, 2529–2537 (1998).

    Article  CAS  Google Scholar 

  45. Lakshmikanth, G.S. & Krishnamoorthy, G. Biophys. J. 77, 1100–1106 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  46. Alcala, J.R., Gratton, E. & Prendergast, F.G. Biophys. J. 51, 597–604 (1987).

    Article  CAS  PubMed Central  Google Scholar 

  47. Gryczynski, I.M. Eftink & Lakowicz, J.R. Biochim. Biophys. Acta. 954, 244–252 (1988).

    Article  CAS  Google Scholar 

  48. Ittah, V. & Haas, E. Biochemistry 34, 4493–4506 (1995).

    Article  CAS  Google Scholar 

  49. Bismuto, E., Sirnagelo, I. & Irace, G. Arch. Biochem. Biophys. 291, 38–42 (1991).

    Article  CAS  Google Scholar 

  50. Swaminathan, R., Krishnamoorthy, G. & Periasamy, N. Biophys. J. 67, 2013–2023 (1994).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Periasamy for the MEM software and advice on its use; A.S.R. Koti for discussion and help regarding MEM analysis; and M.K. Mathew, S. Mayor and B. Rami for critical reading of the manuscript. This work was funded by the Tata Institute of Fundamental Research and by the Wellcome Trust. J.B.U. is the recipient of a Swarnajayanti Fellowship from the Government of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Krishnamoorthy or Jayant B. Udgaonkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakshmikanth, G., Sridevi, K., Krishnamoorthy, G. et al. Structure is lost incrementally during the unfolding of barstar. Nat Struct Mol Biol 8, 799–804 (2001). https://doi.org/10.1038/nsb0901-799

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0901-799

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing