Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of Mip, a prolylisomerase from Legionella pneumophila

Abstract

The human pathogen Legionella pneumophila, the etiological agent of the severe and often fatal Legionnaires' disease, produces a major virulence factor, termed 'macrophage infectivity potentiator protein' (Mip), that is necessary for optimal multiplication of the bacteria within human alveolar macrophages. Mip exhibits a peptidyl prolyl cis-trans isomerase (PPIase) activity, which appears to be important for infection. Here we report the 2.4 Å crystal structure of the Mip protein from L. pneumophila Philadelphia 1 and the 3.2 Å crystal structure of its complex with the drug FK506. Each monomer of the homodimeric protein consists of an N-terminal dimerization module, a long (65 Å) connecting α-helix and a C-terminal PPIase domain exhibiting similarity to human FK506-binding protein. In view of the recent significant increase in the number of reported cases of Legionnaires' disease and other intracellular infections, these structural results are of prime interest for the design of new drugs directed against Mip proteins of intracellular pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stereo view of a representative part of the electron density map.
Figure 2: Structure of LpMip.
Figure 3: Zinc ions as mediators of a crystal contact.
Figure 4: FK506 bound to the active site of LpMip.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Schmid, F.X. Annu. Rev. Biophys. Biomol. Struct. 22, 123–142 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Galat, A. & Metcalfe, S.M. Prog. Biophys. Mol. Biol. 63, 67–118 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Kallen, J. et al. Nature 353, 276–279 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Ranganathan, R., Lu, K.P., Hunter, T. & Noel, J.P. Cell 89, 875–886 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Wilson, K.P. et al. Acta Crystallogr. D 51, 511–521 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Fischer, G., Bang, H., Ludwig, B., Mann, K. & Hacker, J. Mol. Microbiol. 6, 1375–1383 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Engleberg, N.C., Carter, C., Weber, D.R., Cianciotto, N.P. & Eisenstein, B.I. Infect. Immun. 57, 1263–1270 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cianciotto, N.P. & Fields, B.S. Proc. Natl. Acad. Sci. USA. 89, 5188–5191 (1992).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Hentschel, U., Steinert, M. & Hacker, J. Trends Microbiol. 8, 226–231 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Hendrickson, W.A. Science 254, 51–58 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Michnick, S.W., Rosen, M.K., Wandless, T.J., Karplus, M. & Schreiber, S.L. Science 252, 836–839 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Van Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. & Clardy, J. Science 252, 839–842 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Craescu, C.T. et al. Biochemistry 35, 11045–11052 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Schmidt, B. et al. FEBS Lett. 352, 185–190 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Schmidt, B. et al. FEBS Lett. 372, 169–172 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Kuo, C.C. et al. J. Infect. Dis. 167, 841–849 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Fischer, G., Bang, H. & Mech, C. Biomed. Biochim. Acta 43, 1101–1111 (1984).

    CAS  PubMed  Google Scholar 

  18. Janowski, B., Wollner, S., Schutkowski, M. & Fischer, G. Anal. Biochem. 252, 299–307 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Riboldi-Tunnicliffe, A. & Hilgenfeld, R. J. Appl. Crystallogr. 32, 1003–1005 (1999).

    Article  CAS  Google Scholar 

  20. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Collaborative Computing Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  22. Sheldrick, G.M., Dauter, Z., Wilson, K.S., Hope, H. & Sieker, L.C. Acta Crystallogr. D 49, 18–23 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. de La Fortelle, E. & Bricogne, G. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Abrahams, J.P. & Leslie, A.G.W. Acta Crystallogr. D 52, 30–42 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Brünger, A.T. Nature 355, 472–475 (1992).

    Article  PubMed  Google Scholar 

  26. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  27. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110 (1991).

    Article  PubMed  Google Scholar 

  28. Read, R.J. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  29. Kissinger, C.R., Gehlhaar, D.K. & Fogel, D.B. Acta Crystallogr. D 55, 484–491 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Esnouf, R.M. J. Mol. Graph. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  31. Merritt, A.E. & Bacon, D.J. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  33. Weiss, M.S. & Hilgenfeld, R. J. Appl. Crystallogr. 30, 203–205 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Savoia and the staff of XRD beamline 5.2 at Elettra (Sincrotrone Trieste), Trieste, Italy, for help with data collection. FK506 was a gift from Fujisawa Pharmaceutical Co. This work was supported in part by the Deutsche Forschungsgemeinschaft. R.H., G.F. and J.H. thank the Fonds der Chemischen Industrie. This work is dedicated to the memory of L. Fonda and P.M. Fasella.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Hilgenfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riboldi-Tunnicliffe, A., König, B., Jessen, S. et al. Crystal structure of Mip, a prolylisomerase from Legionella pneumophila. Nat Struct Mol Biol 8, 779–783 (2001). https://doi.org/10.1038/nsb0901-779

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0901-779

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing