Letter | Published:

Structure of the DLM-1–Z-DNA complex reveals a conserved family of Z-DNA-binding proteins

Nature Structural Biology volume 8, pages 761765 (2001) | Download Citation

Subjects

Abstract

The first crystal structure of a protein, the Zα high affinity binding domain of the RNA editing enzyme ADAR1, bound to left-handed Z-DNA was recently described. The essential set of residues determined from this structure to be critical for Z-DNA recognition was used to search the database for other proteins with the potential for Z-DNA binding. We found that the tumor-associated protein DLM-1 contains a domain with remarkable sequence similarities to ZαADAR. Here we report the crystal structure of this DLM-1 domain bound to left-handed Z-DNA at 1.85 Å resolution. Comparison of Z-DNA binding by DLM-1 and ADAR1 reveals a common structure-specific recognition core within the binding domain. However, the domains differ in certain residues peripheral to the protein–DNA interface. These structures reveal a general mechanism of Z-DNA recognition, suggesting the existence of a family of winged-helix proteins sharing a common Z-DNA binding motif.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

References

  1. 1.

    , , , & Nature 362, 219–223 (1993).

  2. 2.

    , , & Nature 364, 412–420 (1993).

  3. 3.

    & Curr. Opin. Struct. Biol. 10, 110–116 (2000).

  4. 4.

    , , , & Science 284, 1841–1845 (1999).

  5. 5.

    , & Curr. Opin. Cell Biol. 9, 343–349 (1997).

  6. 6.

    & J. Biol. Chem. 271, 11595–11598 (1996).

  7. 7.

    et al. Gene 240, 157–163 (1999).

  8. 8.

    et al. Proc. Natl. Acad. Sci. USA 94, 8421–8426 (1997).

  9. 9.

    et al. J. Biol. Chem. 274, 2899–2906 (1999).

  10. 10.

    et al. FEBS Lett. 458, 27–31 (1999).

  11. 11.

    , , , & EMBO J. 18, 470–479 (1999).

  12. 12.

    et al. J. Chem. Soc. 2, 1015–1018 (1987).

  13. 13.

    , , , & J. Mol. Biol. 307, 357–377 (2001).

  14. 14.

    et al. Acta. Crystallogr. D. 54, 905–921 (1998).

  15. 15.

    , , , & EMBO J. 11, 4653–4663 (1992)

  16. 16.

    & Gene 258, 165–172 (2000).

  17. 17.

    & J. Virol. 75, 850–856 (2001).

  18. 18.

    , & Biochemistry 36, 5149–5156 (1997).

  19. 19.

    et al. Acta Crystallogr. D 55, 1362–1364 (1999).

  20. 20.

    & Methods Enzymol. 276, 307–326 (1997).

  21. 21.

    , & Acta Crystallogr. D 55, 484–491 (1999).

  22. 22.

    Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  23. 23.

    , & Acta Crystallogr. D 57, 122–133 (2001).

  24. 24.

    Acta Crystallogr. D 55, 1997–2004 (1999).

Download references

Acknowledgements

We thank S. Rothenburg (Universitätsklinikum Hamburg-Eppendorf) for providing mouse cDNA and for carefully reading the manuscript. Helpful discussions with U. Müller, Y.A. Muller (MDC) and M.A. Rould (UVM) are gratefully acknowledged.

Author information

Author notes

    • Thomas Schwartz

    Current address: Laboratory of Cell Biology, The Rockefeller University, New York, New York 10021, USA.

Affiliations

  1. Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, D-13125 Berlin, Germany.

    • Thomas Schwartz
    • , Joachim Behlke
    •  & Udo Heinemann
  2. Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

    • Ky Lowenhaupt
    •  & Alexander Rich

Authors

  1. Search for Thomas Schwartz in:

  2. Search for Joachim Behlke in:

  3. Search for Ky Lowenhaupt in:

  4. Search for Udo Heinemann in:

  5. Search for Alexander Rich in:

Corresponding author

Correspondence to Thomas Schwartz.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nsb0901-761

Further reading