Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the DLM-1–Z-DNA complex reveals a conserved family of Z-DNA-binding proteins

Abstract

The first crystal structure of a protein, the Zα high affinity binding domain of the RNA editing enzyme ADAR1, bound to left-handed Z-DNA was recently described. The essential set of residues determined from this structure to be critical for Z-DNA recognition was used to search the database for other proteins with the potential for Z-DNA binding. We found that the tumor-associated protein DLM-1 contains a domain with remarkable sequence similarities to ZαADAR. Here we report the crystal structure of this DLM-1 domain bound to left-handed Z-DNA at 1.85 Å resolution. Comparison of Z-DNA binding by DLM-1 and ADAR1 reveals a common structure-specific recognition core within the binding domain. However, the domains differ in certain residues peripheral to the protein–DNA interface. These structures reveal a general mechanism of Z-DNA recognition, suggesting the existence of a family of winged-helix proteins sharing a common Z-DNA binding motif.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein sequences, domain structure and in vitro Z-DNA binding studies.
Figure 2: Overall structure of the ZαDLM–Z-DNA complex.
Figure 3: Comparison of protein–DNA contacts between ZαDLM and ZαADAR.
Figure 4: Electron density of the ZαDLM–Z-DNA complex.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Ramakrishnan, V., Finch, J.T., Graziano, V., Lee, P.L. & Sweet, R.M. Nature 362, 219–223 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Clark, K.L., Halay, E.D., Lai, E. & Burley, S.K. Nature 364, 412–420 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Gajiwala, K.S. & Burley, S.K. Curr. Opin. Struct. Biol. 10, 110–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Schwartz, T., Rould, M.A., Lowenhaupt, K., Herbert, A. & Rich, A. Science 284, 1841–1845 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Maas, S., Melcher, T. & Seeburg, P.H. Curr. Opin. Cell Biol. 9, 343–349 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Herbert, A. & Rich, A. J. Biol. Chem. 271, 11595–11598 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Fu, Y. et al. Gene 240, 157–163 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Herbert, A. et al. Proc. Natl. Acad. Sci. USA 94, 8421–8426 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schwartz, T. et al. J. Biol. Chem. 274, 2899–2906 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Schade, M. et al. FEBS Lett. 458, 27–31 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Schade, M., Turner, C.J., Lowenhaupt, K., Rich, A. & Herbert, A. EMBO J. 18, 470–479 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takagi, T. et al. J. Chem. Soc. 2, 1015–1018 (1987).

    Google Scholar 

  13. Brandl, M., Weiss, M.S., Jabs, A., Sühnel, J. & Hilgenfeld, R. J. Mol. Biol. 307, 357–377 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Brunger, A.T. et al. Acta. Crystallogr. D. 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Wittig, B., Wolfl, S., Dorbic, T., Vahrson, W. & Rich, A. EMBO J. 11, 4653–4663 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kawakubo, K. & Samuel, C.E. Gene 258, 165–172 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Brandt, T.A. & Jacobs, B.L. J. Virol. 75, 850–856 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Behlke, J., Ristau, O. & Schönfeld, H.-J. Biochemistry 36, 5149–5156 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Schwartz, T. et al. Acta Crystallogr. D 55, 1362–1364 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Kissinger, C.R., Gehlhaar, D.K. & Fogel, D.B. Acta Crystallogr. D 55, 484–491 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  23. Winn, M.D., Isupov, M.N. & Murshudov, G.N. Acta Crystallogr. D 57, 122–133 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Merritt, E.A. Acta Crystallogr. D 55, 1997–2004 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Rothenburg (Universitätsklinikum Hamburg-Eppendorf) for providing mouse cDNA and for carefully reading the manuscript. Helpful discussions with U. Müller, Y.A. Muller (MDC) and M.A. Rould (UVM) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schwartz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, T., Behlke, J., Lowenhaupt, K. et al. Structure of the DLM-1–Z-DNA complex reveals a conserved family of Z-DNA-binding proteins. Nat Struct Mol Biol 8, 761–765 (2001). https://doi.org/10.1038/nsb0901-761

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0901-761

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing