Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

How to make a metalloprotein

Copper is an essential transition metal that plays a fundamental role in the biochemistry of all aerobic organisms. Recent work elucidating the structural mechanisms of copper delivery to superoxide dismutase provides insight into the cell biology of copper metabolism and serves as an example of how to understand the principles governing the incorporation of metals into proteins.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways of copper trafficking within a mammalian cell.

References

  1. Linderstrøm-Lang, K.U. Lane medical lectures (Stanford University Press, Stanford; 1952).

    Google Scholar 

  2. Lamb, A.L., Torres, A.S., O'Halloran T.V. & Rosenzweig, A.C. Nature Struct. Biol. 8, 750–754 (2001).

    Article  Google Scholar 

  3. Culotta, V.C. & Gitlin, J.D. in Molecular and metabolic basis of inherited disease (eds Scriver, C.R., Beaudet, A.L., Sly, W. & Valle, D.) 3105–3126 (McGraw-Hill Publishing, New York; 2001).

    Google Scholar 

  4. O'Halloran, T.V. & Culotta, V.C. J. Biol. Chem. 275,25057–25060 (2000).

    Article  CAS  Google Scholar 

  5. Rae, T., Schmidt, P., Pufahl, R., Culotta, V.C. & O'Halloran, T.V. Science 284,805–808 (1999).

    Article  CAS  Google Scholar 

  6. Outten, C.E & O'Halloran T.V. Science 292, 2488–2492 (2001).

    Article  CAS  Google Scholar 

  7. Fridovich, I. Annu. Rev. Biochem. 64, 97–112 (1995).

    Article  CAS  Google Scholar 

  8. Wong, P.C. Proc. Natl. Acad. Sci. 97, 2886–2891 (2000).

    Article  CAS  Google Scholar 

  9. Lamb, A.L. et al. Nature Struct. Biol. 6, 724–729 (1999).

    Article  CAS  Google Scholar 

  10. Lamb, A.L. et al. Biochemistry 39, 1589–1595 (2000).

    Article  CAS  Google Scholar 

  11. Casareno, R.L.B., Waggoner, D. & Gitlin, J.D. J. Biol. Chem. 273, 23625–23628 (1998).

    Article  CAS  Google Scholar 

  12. Schmidt, P.J. et al. J. Biol. Chem. 274, 23719–23725 (1999).

    Article  CAS  Google Scholar 

  13. Schmidt, P.J., Kunst, C. & Culotta, V.C. J. Biol. Chem. 275, 33771–33776 (2000).

    Article  CAS  Google Scholar 

  14. Lamb, A.L. et al. Biochemistry 39, 14720–14727 (2000).

    Article  CAS  Google Scholar 

  15. Torres, A.S., Petri, V., Rae, T.D. & O'Halloran T.V. J. Biol. Chem. 276, in the press (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Gitlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartnikas, T., Gitlin, J. How to make a metalloprotein. Nat Struct Mol Biol 8, 733–734 (2001). https://doi.org/10.1038/nsb0901-733

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0901-733

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing