Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The orientation of DNA in an archaeal transcription initiation complex

Abstract

RNA polymerase from the hyperthermophile archaeon Pyrococcus furiosus (Pfu) forms specific and transcriptionally active complexes with its conjugate transcription factors TBP (the archaeal TATA binding protein homolog) and TFB (the archaeal homolog of eukaryotic RNA polymerase II and III transcription factors TFIIB and Brf) at the Pfu glutamate dehydrogenase promoter. A photochemical crosslinking method was used to map the vicinity of the catalytic subunits of Pfu RNA polymerase to DNA locations distributed along the polymerase–promoter interface. The largest component of this archaeal polymerase is split into two subunits, A′ and A″, whose relatively sharp boundary of DNA crosslinking (probed on the transcribed strand) is centered five to six base pairs downstream of the transcriptional start site. A strong argument based on this information, on the well-defined homology between the core bacterial, archaeal and eukaryotic RNA polymerase subunits, and on the recently determined structure of a bacterial RNA polymerase specifies the directionality of DNA in the archaeal transcription complex and its trajectory downstream of the transcriptional start site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Pfu gdh promoter, initiation complexes and transcription.
Figure 2: Position-specific crosslinking of the gdh promoter to the catalytic subunits of Pfu RNAP.
Figure 3: Model of the DNA trajectory.

Similar content being viewed by others

References

  1. Langer, D., Hain, J., Thuriaux, P. & Zillig, W. Proc. Natl. Acad. Sci. USA 92, 5768–5772 ( 1995).

    Article  CAS  Google Scholar 

  2. Thomm, M. FEMS Microbiol. Rev. 18, 159–171 (1996).

    Article  CAS  Google Scholar 

  3. Bell, S.D. & Jackson, S.P. Cold Spring Harb. Symp. Quant. Biol. 63, 41–51 ( 1998).

    Article  CAS  Google Scholar 

  4. Berghöfer, B. et al. Nucleic Acids Res. 16, 8113– 8128 (1988).

    Article  Google Scholar 

  5. Zhang, G. et al. Cell 98, 811–824 (1999).

    Article  CAS  Google Scholar 

  6. Hethke, C., Geerling, A.C.M., Hausner, W., De Vos, W.M. & Thomm, M. Nucleic Acids Res. 24, 2369–2376 (1996).

    Article  CAS  Google Scholar 

  7. Qureshi, S.A., Bell, S.D. & Jackson, S.P. EMBO J. 16, 2927– 2936 (1997).

    Article  CAS  Google Scholar 

  8. Hausner, W., Wettach, J., Hethke, C. & Thomm, M. J. Biol. Chem. 271, 30144–30148 (1996).

    Article  CAS  Google Scholar 

  9. Kosa, P.F., Ghosh, G., Dedecker, B.S. & Sigler, P.B. Proc. Natl. Acad. Sci. USA 94, 6042– 6047 (1997).

    Article  CAS  Google Scholar 

  10. Littlefield, O., Korkhin, Y. & Sigler, P.B. Proc. Natl. Acad. Sci. USA 96, 13668–13673 (1999).

    Article  CAS  Google Scholar 

  11. Bartholomew, B., Tinker, R.L., Kassavetis, G.A. & Geiduschek, E.P. Methods Enzymol. 262, 476–494 (1995).

    Article  CAS  Google Scholar 

  12. Hethke, C., Bergerat, A., Hausner, W., Forterre, P. & Thomm, M. Genetics 152, 1325–1333 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Straney, D.C. & Crothers, D.M. Cell 43, 449–459 (1985).

    Article  CAS  Google Scholar 

  14. Mayer, A.N. & Barany, F. Gene 153, 1–8 (1995).

    Article  CAS  Google Scholar 

  15. Yang, S.W. & Nash, H.A. Proc. Natl. Acad. Sci. USA 91, 12183–12187 (1994).

    Article  CAS  Google Scholar 

  16. Lagrange, T. et al. Proc. Natl. Acad. Sci. USA 93, 10620 –10625 (1996).

    Article  CAS  Google Scholar 

  17. Persinger, J., Sengupta, S.M. & Bartholomew, B. Mol. Cell. Biol. 19, 5218– 5234 (1999).

    Article  CAS  Google Scholar 

  18. Fu, J. et al. Cell 98, 799–810 (1999).

    Article  CAS  Google Scholar 

  19. Cramer, P. et al. Science 288, 640–649 (2000).

    Article  CAS  Google Scholar 

  20. Poglitsch, C.L. et al. Cell 98, 791–798 (1999).

    Article  CAS  Google Scholar 

  21. Nudler, E., Avetissova, E., Markovtsov, V. & Goldfarb, A. Science 273, 211–217 ( 1996).

    Article  CAS  Google Scholar 

  22. Naryshkin, N., Revyakin, A., Kim, Y.G., Mekler, V. & Ebright, R.H. Cell 101, 601– 611 (2000).

    Article  CAS  Google Scholar 

  23. Korzheva, N. et al. Science, 289, 619– 625 (2000).

    Article  CAS  Google Scholar 

  24. Bartholomew, B., Durkovich, D., Kassavetis, G.A. & Geiduschek, E.P. Mol. Cell. Biol. 13, 942–952 (1993).

    Article  CAS  Google Scholar 

  25. Korzheva, N., Mustaev, A., Nudler, E., Nikiforov, V. & Goldfarb, A. Cold Spring Harb. Symp. Quant. Biol. 63, 337–345 (1998).

    Article  CAS  Google Scholar 

  26. Landick, R. Science 284, 598–599 ( 1999).

    Article  CAS  Google Scholar 

  27. Kim, T.K. et al. Proc. Natl. Acad. Sci. USA 94, 12268– 12273 (1997).

    Article  CAS  Google Scholar 

  28. Microbial genomes BLAST data base at NCBI: http://www.ncbi.nlm.nih.gov/Microb_blast/unfinishedgenome.html

  29. Lannutti, B.J., Persinger, J. & Bartholomew, B. Biochemistry 35, 9821– 9831 (1996).

    Article  CAS  Google Scholar 

  30. Forget, D. et al. Proc. Natl. Acad. Sci. USA 94, 7150 –7155 (1997).

    Article  CAS  Google Scholar 

  31. Robert, F. et al. Mol. Cell. 2, 341– 351 (1998).

    Article  CAS  Google Scholar 

  32. Kassavetis, G.A., Kumar, A., Ramirez, E. & Geiduschek, E.P. Mol. Cell. Biol. 18, 5587–5599 ( 1998).

    Article  CAS  Google Scholar 

  33. Sayle, R. & Milner-White, E.J. Trends Biochem. Sci. 20, 374 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to S.A. Darst for providing coordinates of Taq RNA polymerase, to V. Nikiforov for sharing data on sequence alignments, to W. Liu for generous help in generating Fig. 3, to J. Buschdorf and B. Goede for valuable materials and to G.A. Kassavetis for advice. Research support at UCSD from the NIGMS, at Kiel from the DFG and the Fonds der Chemischen Industrie, and a National Research Service postdoctoral fellowship from the NIH to M.S.B. are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Bartlett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartlett, M., Thomm, M. & Geiduschek, E. The orientation of DNA in an archaeal transcription initiation complex . Nat Struct Mol Biol 7, 782–785 (2000). https://doi.org/10.1038/79020

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79020

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing