Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identifying two ancient enzymes in Archaea using predicted secondary structure alignment

Abstract

It is now possible to compare life forms at high levels of detail and completeness due to the increasing availability of whole genomes from all three domains. However, exploration of interesting hypotheses requires the ability to recognize a correspondence between proteins that may since have diverged beyond the threshold of detection by sequence-based methods. Since protein structure is far better conserved than protein sequence, structural information can enhance detection sensitivity, and this is the basis for the field of structural genomics. Demonstrating the effectiveness of this approach, we identify two important but previously elusive Archaeal enzymes: a homolog of dihydropteroate synthase and a thymidylate synthase. The former is especially noteworthy in that no Archaeal homolog of a bacterial folate biosynthetic enzyme has been found to date. Experimental confirmation of the deduced activity of both enzymes is described. Identification of two different proteins was attempted deliberately to help allay concern that predictive success is merely a lucky accident.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biosynthetic pathways.
Figure 2: Reaction proposed to be catalyzed by the thymidylate synthetase from Methanococcus jannaschii.

Similar content being viewed by others

References

  1. Aurora, R. & Rose, G.D. Proc. Natl. Acad. Sci. USA 95, 2818–2823 (1998).

    Article  CAS  Google Scholar 

  2. Bult, C.J. et al. Science 273, 1058–1073 (1997).

    Article  Google Scholar 

  3. Smith, D.R. et al. J. Bacteriol. 179,7135–7155 (1997).

    Article  CAS  Google Scholar 

  4. Klenk, H.P. et al. Nature 390, 364–370 (1997).

    Article  CAS  Google Scholar 

  5. Garnier, J. & Robson, B. In The Development of the prediction of protein structure (ed. Fasman, G.) 417–465 (Plenum, New York; 1989).

    Google Scholar 

  6. Aurora, R. & Rose, G.D. Protein Sci. 7, 21–38 (1998).

    Article  CAS  Google Scholar 

  7. Needleman, S.B. & Wunsch, C.D. J. Mol. Biol. 48, 443–453 (1970).

    Article  CAS  Google Scholar 

  8. White, R.H. Biochemistry 32, 745–753 (1993).

    Article  CAS  Google Scholar 

  9. Keltjens, J.T., Huberts, M.J., Laarhoven, W.H. & Vogels, G.D. Eur. J. Biochem. 130, 537–544 (1983).

    Article  CAS  Google Scholar 

  10. DiMarco, A.A., Bobik, T.A. & Wolfe, R.S. Annu. Rev. Biochem. 59, 355–394 (1990).

    Article  CAS  Google Scholar 

  11. Keltjens, J.T., Raemakers-Franken, P.C. & Vogels, G.D. In Microb. Growth C1 Compd. [7th Int. Sym.] 135–150 (Intercept, Andover, UK; 1993).

    Google Scholar 

  12. Leigh, J.A. Appl. Environ. Microbiol. 45, 800–803 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Green, J.M., Nichols, B.P. & Matthews, R.G. In Escherichia coli and Salmonella, Cellular and Molecular biology. (ed. Neidhardt, F.C.) 665–673 (American Society for Microbiology; 1996).

    Google Scholar 

  14. White, R.H. Biochemistry 35, 3447–3456 (1996).

    Article  CAS  Google Scholar 

  15. White, R.H. Biochemistry 29, 5397–5404 (1990).

    Article  CAS  Google Scholar 

  16. Howell, D.M. & White, R.H. J. Bacteriol. 179, 5165–5170 (1997).

    Article  CAS  Google Scholar 

  17. Myers, E.W. & Miller, W. Bull. Math. Biol. 51, 5–37 (1989).

    Article  CAS  Google Scholar 

  18. Achari, A. et al. Nature Struct. Biol. 4, 490–497 (1997).

    Article  CAS  Google Scholar 

  19. Hampele, I.C. et al. J. Mol. Biol. 268, 21–30 (1997).

    Article  CAS  Google Scholar 

  20. Bernstein, F.C. et al. J. Mol. Biol. 112, 535–542 (1977).

    Article  CAS  Google Scholar 

  21. Altschul, S.F. et al. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  22. White, R.H. Methods Enzymol. 44, 391–401 (1997).

    Article  Google Scholar 

  23. Shiota, T. In Folates and pterins, Vol. 1, chemistry and biochemistry of folates (eds Blakley, R.L. & Benkovic, S.J.) 121 (John Wiley & Sons, New York; 1984).

    Google Scholar 

  24. White, R.H. J. Bacteriol. 162, 516–520 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Perry, K.M. et al. Proteins, 8, 315–333 (1990).

    Article  CAS  Google Scholar 

  26. Nyce, G.W. & White, R.H. J. Bacteriol. 178, 914–916 (1996).

    Article  CAS  Google Scholar 

  27. Krone, U.E., McFarlan, S.C. & Hognekamp, H.P.C. Eur. J. Biochem. 220, 789–794 (1994).

    Article  CAS  Google Scholar 

  28. Vaupel, M., Dietz, H., Linder, D. & Thauer, R.K. Eur. J. Biochem. 236, 294–300 (1996).

    Article  CAS  Google Scholar 

  29. Priest, D.G. & Doig, M.T. Methods Enzymol. 122, 313–319 (1986).

    Article  CAS  Google Scholar 

  30. Holm, L. & Sander, C. Science 273, 595–603 (1996).

    Article  CAS  Google Scholar 

  31. Doolittle, R.F. Annu. Rev. Biochem. 64, 287–314 (1995).

    Article  CAS  Google Scholar 

  32. Gibrat, J., Madej, T. & Bryant, S.H. Curr. Opin. Struct. Biol. 6, 377–385 (1996).

    Article  CAS  Google Scholar 

  33. Zhou, D. & White, R.H. J. Bacteriol. 174, 4576–4582 (1992).

    Article  CAS  Google Scholar 

  34. Myers, E and Miller W. Comput. Appl. Biosci. 4, 11–17 (1988).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by a National Science Foundation grant to R.H.W. and a National Institutes of Health grant to G.D.R. We thank M.E. Rasche for running the experiments to trap the covalent complex between FdUMP and thymidylate synthase, K. Harich for preforming the GC-MS analyses, and D. Grahame for supplying the [methyl-3H]-methyl-tetrahydrosarcinapterin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Aurora, R., Rose, G. et al. Identifying two ancient enzymes in Archaea using predicted secondary structure alignment. Nat Struct Mol Biol 6, 750–754 (1999). https://doi.org/10.1038/11525

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11525

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing