Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ

Abstract

Escherichia coli osmosensor EnvZ is a protein histidine kinase that plays a central role in osmoregulation, a cellular adaptation process involving the His-Asp phosphorelay signal transduction system. Dimerization of the transmembrane protein is essential for its autophosphorylation and phosphorelay signal transduction functions. Here we present the NMR-derived structure of the homodimeric core domain (residues 223–289) of EnvZ that includes His 243, the site of autophosphorylation and phosphate transfer reactions. The structure comprises a four-helix bundle formed by two identical helix-turn-helix subunits, revealing the molecular assembly of two active sites within the dimeric kinase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-dimensional structure of EnvZ domain A.
Figure 2: Hydrophobic core and sequence alignment of EnvZ domain A.
Figure 3: Interaction between EnvZ and OmpR.
Figure 4: Summary of mutations in EnvZ domain A.

Similar content being viewed by others

References

  1. Egger, L.A., Park, H. & Inouye, M. Genes Cells 2, 167–184 (1997).

    Article  CAS  Google Scholar 

  2. Mizuno, T. J. Biochem. (Tokyo) 123, 555–563 (1998).

    Article  CAS  Google Scholar 

  3. Swanson, R.V., Alex, L.A. & Simon, M.I. Trends Biochem. Sci. 19, 485–490 (1994).

    Article  CAS  Google Scholar 

  4. Forst, S., Comeau, D., Norioka, S. & Inouye, M. J. Biol. Chem. 262, 16433–16438 (1987).

    CAS  PubMed  Google Scholar 

  5. Forst, S.A. & Roberts, D.L. Res. Microbiol. 145, 363–373 (1994).

    Article  CAS  Google Scholar 

  6. Park, H., Saha, S.K. & Inouye, M. Proc. Natl. Acad. Sci. USA 95, 6728–6732 (1998).

    Article  CAS  Google Scholar 

  7. Hidaka, Y., Park, H. & Inouye, M. FEBS Lett. 400, 238–242 (1997).

    Article  CAS  Google Scholar 

  8. Kay, L.E. Prog. Biophys. Mol. Biol. 63, 277–299 (1995).

    Article  CAS  Google Scholar 

  9. Zhou, H., Lowry, D.F., Swanson, R.V., Simon, M.I. & Dahlquist, F.W. Biochemistry 34, 13858–13870 (1995).

    Article  CAS  Google Scholar 

  10. Kato, M., Mizuno, T., Shimizu, T. & Hakoshima, T. Cell 88, 717–723 (1997).

    Article  CAS  Google Scholar 

  11. Varughese, K.I., Madhusudan, Zhou, X.Z., Whiteley, J.M. & Hoch, J.A. Mol. Cell 2, 485–493 (1998).

    Article  CAS  Google Scholar 

  12. Bilwes, A.M., Alex, L.A., Crane, B.R. & Simon, M.I. Cell 96, 131–141 (1999).

    Article  CAS  Google Scholar 

  13. Tanaka, T. et al. Nature 396, 88–92 (1998).

    Article  CAS  Google Scholar 

  14. Hsing, W. & Silhavy, T.J. J. Bacteriol. 179, 3729–3735 (1997).

    Article  CAS  Google Scholar 

  15. Hsing, W., Russo, F.D., Bernd, K.K. & Silhavy, T.J. J. Bacteriol. 180, 4538–4546 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Russo, F.D. & Silhavy, T.J. J. Mol. Biol. 222, 567–580 (1991).

    Article  CAS  Google Scholar 

  17. Delgado, J., Forst, S., Harlocker, S. & Inouye, M. Mol. Microbiol. 10, 1037–1047 (1993).

    Article  CAS  Google Scholar 

  18. Spera, S., Ikura, M. & Bax, A. J. Biomol. NMR 1, 155–165 (1991).

    Article  CAS  Google Scholar 

  19. Bax, A. et al. Methods Enzymol 239, 79–105 (1994).

    Article  CAS  Google Scholar 

  20. Delaglio, F. et al. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  21. Garrett, D.S., Powers, R., Gronenborn, A. & Clore, G.M. J. Magn. Reson. 95, 214–220 (1991).

    CAS  Google Scholar 

  22. Wüthrich, K., Billeter, M. & Braun, W. J. Mol. Biol. 169, 949–961 (1983).

    Article  Google Scholar 

  23. Venters, R.A., Farmer II, B.T., Fierke, C.A. & Spicer, L.D. J. Mol. Biol. 264, 1101–1116 (1996).

    Article  CAS  Google Scholar 

  24. Nilges, M., Clore, G.M. & Gronenborn, A.M. FEBS Lett. 229, 317–324 (1988).

    Article  CAS  Google Scholar 

  25. Nilges, M. J. Mol. Biol. 245, 645–660 (1995).

    Article  CAS  Google Scholar 

  26. Brünger, A.T. X-PLOR Version3.1: A system for X-ray crystallography and NMR (Yale University Press, New Haven, Connecticut; 1993).

    Google Scholar 

  27. Koradi, R., Billeter, M. & Wüthrich, K. J. Mol. Graph. 14, 51–55, 29–32 (1996).

    Article  CAS  Google Scholar 

  28. Nicholls, A., Sharp, K.A. & Honig, B. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  29. Kraulis, P. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  30. Merritt, E.A. & Bacon, D.J. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  31. Zhang, Z. et al. Nucleic. Acids Res. 26, 3986–3990 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Kay for providing NMR pulse sequences, D. Garrett for helpful instructions on PIPP/STAPP, M. Osawa for providing software used in structure calculation, K. Yap for calculation of interhelical angles, and S. Bagby for critical reading of the manuscript. This work was supported by grants to T.T. from JSPS, to M. Inouye from the NIH, and to M. Ikura from the Howard Hughes Medical Institute. R.I. and D.L. acknowledge HFSP postdoctoral fellowships, and C.T. a postgraduate fellowship from the Ministry of Education, Science and Culture of Japan and from the TARA, University of Tsukuba. M. Ikura is an HHMI International esearch Scholar and a Medical Research Council of Canada Scientist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masayori Inouye or Mitsuhiko Ikura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomomori, C., Tanaka, T., Dutta, R. et al. Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ . Nat Struct Mol Biol 6, 729–734 (1999). https://doi.org/10.1038/11495

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11495

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing