Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of the copper chaperone for superoxide dismutase

Abstract

Cellular systems for handling transition metal ions have been identified, but little is known about the structure and function of the specific trafficking proteins. The 1.8 Å resolution structure of the yeast copper chaperone for superoxide dismutase (yCCS) reveals a protein composed of two domains. The N-terminal domain is very similar to the metallochaperone protein Atx1 and is likely to play a role in copper delivery and/or uptake. The second domain resembles the physiological target of yCCS, superoxide dismutase I (SOD1), in overall fold, but lacks all of the structural elements involved in catalysis. In the crystal, two SOD1-like domains interact to form a dimer. The subunit interface is remarkably similar to that in SOD1, suggesting a structural basis for target recognition by this metallochaperone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of yCCS.
Figure 2: Comparison of the yCCS structure with Atx1 and SOD1.
Figure 3: Structure-based alignments comparing the amino acid sequences of CCS to Atx1 and to SOD1.
Figure 4: The dimerization interfaces of yCCS and ySOD1.

Similar content being viewed by others

References

  1. Culotta, V.C. et al. J. Biol. Chem. 272, 23469– 23472 (1997).

    Article  CAS  Google Scholar 

  2. Pufahl, R.A. et al. Science 278, 853– 856 (1997).

    Article  CAS  Google Scholar 

  3. Valentine, J.S. & Gralla, E.B. Science 278, 817–818 (1997).

    Article  CAS  Google Scholar 

  4. Rae, T.D., Schmidt, P.J., Pufahl, R.A., Culotta, V.C. & O'Halloran, T.V. Science 284, 805–808 (1999).

    Article  CAS  Google Scholar 

  5. Lin, S.-J., Pufahl, R.A., Dancis, A., O'Halloran, T.V. & Culotta, V.C. J. Biol. Chem. 272, 9215– 9220 (1997).

    Article  CAS  Google Scholar 

  6. Gamonet, F. & Lauquin, G.J. Eur. J. Biochem. 251 , 716–723 (1998).

    Article  CAS  Google Scholar 

  7. Glerum, D.M., Shtanko, A. & Tzagoloff, A. J. Biol. Chem. 271, 14504– 14509 (1996).

    Article  CAS  Google Scholar 

  8. Srinivasan, C., Posewitz, M.C., George, G.N. & Winge, D.R. Biochemistry 37, 7572–7577 (1998).

    Article  CAS  Google Scholar 

  9. Rosenzweig, A.C. et al. Structure 7, 605–617 (1999).

    Article  CAS  Google Scholar 

  10. Gitschier, J., Moffat, B., Reilly, D., Wood, W.I. & Fairbrother, W.J. Nature Struct. Biol. 5, 47– 54 (1998).

    Article  CAS  Google Scholar 

  11. Steele, R.A. & Opella, S.J. Biochemistry 36, 6885–6895 (1997).

    Article  CAS  Google Scholar 

  12. Bull, P.C. & Cox, D.W. Trends Genet. 10, 246–252 (1994).

    Article  CAS  Google Scholar 

  13. Kissinger, C.R., Sieker, L.C., Adman, E.T. & Jensen, L.H. J. Mol. Biol. 219, 693–715 (1993).

    Article  Google Scholar 

  14. Portnoy, M.E. et al. J. Biol. Chem. 274, 15041– 15045 (1999).

    Article  CAS  Google Scholar 

  15. Lyons, T.J. et al. J. Biol. Inorg. Chem. 3, 650– 662 (1998).

    Article  CAS  Google Scholar 

  16. Tainer, J.A., Getzoff, E.D., Beem, K.M., Richardson, J.S. & Richardson, D.C. J. Mol. Biol. 160 , 181–217 (1982).

    Article  CAS  Google Scholar 

  17. Getzoff, E.D., Tainer, J.D., Stempien, M.M., Bell, G.I. & Hallewell, R.A. Proteins 5, 322–336 (1989).

    Article  CAS  Google Scholar 

  18. Bordo, D., Djinovic, K. & Bolognesi, M. J. Mol. Biol. 238, 366– 386 (1994).

    Article  CAS  Google Scholar 

  19. Getzoff, E.D. et al. Nature 306, 287–290 (1983).

    Article  CAS  Google Scholar 

  20. Djinovic, K. et al. J. Mol. Biol. 225, 791– 809 (1992).

    Article  CAS  Google Scholar 

  21. Jones, S. & Thornton, J.M. Proc. Natl. Acad. Sci. USA 93, 13–20 (1996).

    Article  CAS  Google Scholar 

  22. Bertini, I., Piccioli, M., Viezzoli, M.S., Chiu, C.Y. & Mullenbach, G.T. Eur. J. Biophys. 23, 167–176 (1994).

    Article  CAS  Google Scholar 

  23. Stites, W.E. Chem. Rev. 97, 1233–1250 (1997).

    Article  CAS  Google Scholar 

  24. Valentine, J.S. & Pantoliano, M.W. in Copper proteins (ed. Spiro, T.G.) 291–358 (Wiley-Interscience, New York; 1981).

    Google Scholar 

  25. Siddique, T., Nijhawan, D. & Hentati, A. J. Neural Transm. 49, 219– 233 (1997).

    CAS  Google Scholar 

  26. Hendrickson, W.A., Horton, J.R. & LeMaster, D.M. EMBO J. 9, 1665– 1672 (1990).

    Article  CAS  Google Scholar 

  27. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 ( 1997).

    Article  CAS  Google Scholar 

  28. Collaborative Computational Project, Number 4 Acta Crystallogr. D50, 760–763 (1994).

  29. Brünger, A.T. et al. Acta Crystallogr. D54, 905– 921 (1998).

    Google Scholar 

  30. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A47, 110–119 ( 1991).

    Article  CAS  Google Scholar 

  31. Laskowski, R.A. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  32. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  33. Merritt, E.A. & Bacon, D.J. Methods Enzymol. 277 , 505–524 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Pascoli and M. Hou for assistance with crystallization and J. Quintana and D. Keane for assistance with data collection. This work was supported by a grant from the NIH (to A.C.R.), by funds from the ALS Association (A.C.R.), by funds from the Robert H. Lurie Cancer Center (A.C.R.), by a grant from the NIH (to T.V.O.), by a supplement from NIGMS to this same grant (to A.C.R. and T.V.O.), by funds from the ALS Association (T.V.O.), and by an NIH NRSA Training Grant (R.A.P.). The DND-CAT Synchrotron Research Center at the Advanced Photon Sourceis supported by the E.I. Dupont de Nemours & Co., The Dow Chemical Company, the NSF and the State of Illinois.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy C. Rosenzweig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamb, A., Wernimont, A., Pufahl, R. et al. Crystal structure of the copper chaperone for superoxide dismutase. Nat Struct Mol Biol 6, 724–729 (1999). https://doi.org/10.1038/11489

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11489

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing