Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ultrafast time-resolved crystallography

Abstract

Synchrotron radiation sources have allowed time-resolved crystallographic experiments with nanosecond time resolution to be conducted on myoglobin and photoactive yellow protein.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Moffat, K. Time-resolved macromolecular crystallography. Annu. Rev. Biophys. Chem. 18, 309–332 ( 1989).

    Article  CAS  Google Scholar 

  2. Cruickshank, D.W.J., Helliwell, J.R., & Johnson, L.N. Time-resolved macromolecular crystallography. (Oxford Science Publications, Oxford, UK; 1992).

    Google Scholar 

  3. Helliwell, J.R. & Rentzepis, P.M. Time-resolved diffraction (Oxford University Press; 1997).

    Google Scholar 

  4. Schlichting, I. et al. Time-resolved X-ray crystallographic study of the conformational change in Ha-ras p21 protein on GTP hydrolysis. Nature 345, 309–315 (1990).

    Article  CAS  Google Scholar 

  5. Genick, U.K. et al. Structure of a protein photocycle intermediate by millisecond time-resolved crystallography. Science 275, 1471–1475 (1997).

    Article  CAS  Google Scholar 

  6. Bourgeois D. et al. Feasibility and realization of single pulse Laue diffraction on macromolecular crystals at ESRF. J. Synch. Rad. 3, 65–74 (1996).

    Article  CAS  Google Scholar 

  7. Ren, Z. & Moffat, K. Quantitative analysis of synchrotron Laue diffraction patterns in macromolecular crystallography. J. Appl. Crystallogr. 28, 461–481 (1995).

    Article  CAS  Google Scholar 

  8. Ren, Z., Ng, K., Borgstahl, G.E.O., Getzoff, E.D. & Moffat, K. Quantitative analysis of time-resolved Laue diffraction patterns. J. Appl. Crystallogr. 29, 246–260 (1996).

    Article  CAS  Google Scholar 

  9. Ng, K., Getzoff, E.D. & Moffat, K. Optical studies of a bacterial photoreceptor protein, photoactive yellow protein, in single crystals. Biochemistry 34:879–890 (1996).

    Article  Google Scholar 

  10. Moffat, K. Laue diffraction. Meth. Enz. 277, 433– 447 (1997).

    Article  CAS  Google Scholar 

  11. Bourgeois, D., Longhi, S., Wulff, M., & Cambillau, C. Accuracy of structural information obtained at the European Synchrotron Radiation Facility from very rapid Laue data collection on macromolecules. J. Appl. Crystallogr. 30, 153–163 (1997).

    Article  CAS  Google Scholar 

  12. Bourgeois, D., Nurizzo, D., Kahn, R. & Cambillau, C. An integration routine based on profile fitting with optimized fitting area for the evaluation of weak and/or overlapped two-dimensional Laue or monochromatic patterns. J. Appl. Crystallogr. 31, 22–35 (1998).

    Article  CAS  Google Scholar 

  13. Srajer, V. et al. Photolysis of the carbon monoxide complex of myoglobin: nanosecond time-resolved crystallography. Science 274, 1726–1729 (1996).

    Article  CAS  Google Scholar 

  14. Perman, B., et al. Energy transduction on the nanosecond time scale: early structural events in a xanthopsin photocycle. Science 279, 1946–1950 (1998).

    Article  CAS  Google Scholar 

  15. Ansari, A. et al. Protein states and protein quakes. Proc. Natl. Acad. Sci. USA 82,5000–5004 (1985).

    Article  CAS  Google Scholar 

  16. Teng, T-Y., Srajer, V. & Moffat, K. Initial trajectory of carbon monoxide after photodissociation from myoglobin at cryogenic temperatures. Biochemistry 36, 12087–12100 (1997).

    Article  CAS  Google Scholar 

  17. Meyer, T.E., Yakali, E., Cusanovich, M.A. & Tollin, G. Properties of a water-soluble, yellow protein isolated from a halophilic phototrohlic bacterium that has photochemical activity analogous to sensory rhodopsin. Biochemistry 26, 418–423 (1987).

    Article  CAS  Google Scholar 

  18. Meyer, T.E., Tollin, G., Hazzard, J.H. & Cusanovich, M.A. Photoactive yellow protein from the purple phototrophic bacterium, Ectothiorhodospira halophila. Quantum yield of photobleaching and effects of temperature, alcohols, glycerol, and sucrose on kinetics of photobleaching and recovery. Biophys. J. 56, 559–564 (1989).

    Article  CAS  Google Scholar 

  19. Hoff, W.D. et al. Measurement and global analysis of the absorbance changes in the photocycle of the photoactive yellow protein Ectothiorhodospira halophila. Biophys. J. 67, 1691– 1705 (1994).

    Article  CAS  Google Scholar 

  20. Baltuska, A. et al. The primary events in the photoactivation of yellow protein. Chem. Phys. Lett. 270, 263– 266 (1997).

    Article  CAS  Google Scholar 

  21. Chosrowjan, H., Mataga, N., Nakashima, N., Imamoto, Y. & Tokunaga, F. Femtosecond- picosecond fluorescence studies on excited state dynamics of photoactive yellow protein from Ectothiorhodospira halophila. Chem. Phys. Lett. 270, 267–272 (1997).

    Article  CAS  Google Scholar 

  22. Imamoto, Y., Kataoka, M. & Tokunaga, F. Photoreaction cycle of photoactive yellow protein from Ectothiorhodospira halophila studied by low-temperature spectroscopy. Biochemistry 35, 14047– 14053 (1996).

    Article  CAS  Google Scholar 

  23. Schlichting, I. & Berendzen, J. Out of the blue : the photocycle of the photoactive yellow protein. Structure 5, 735–739 (1997).

    Article  CAS  Google Scholar 

  24. Martin, J.L. & Vos, M.H. Femtosecond biology. Annu. Rev. Biophys. Biomol. Struct. 21, 199– 222 (1992).

    Article  CAS  Google Scholar 

  25. Wulff, M. et al. Time-resolved structures of macromolecules at the ESRF: Single-pulse Laue diffraction, stroboscopic data collection and femtosecond flash photolysis. Nucl. Instrum. & Meth. A398, 69– 84 (1997).

    Article  Google Scholar 

  26. Neutze, R. & Hajdu, J. Femtosecond time resolution in X-ray diffraction experiments. Proc. Natl. Acad. Sci. USA 94, 5651–5655 (1997).

    Article  CAS  Google Scholar 

  27. Doniach, S. Studies of the structure of matter with photons from a X-ray free-electron laser. J. Synch. Rad. 3, 260– 267 (1996).

    Article  CAS  Google Scholar 

  28. Moffat K., & Henderson, R. Freeze trapping of reaction intermediates. Curr. Opin.Struct. Biol. 5, 656– 663 (1995).

    Article  CAS  Google Scholar 

  29. Stoddard, B.L. Caught in a chemical trap. Nature. Struct. Biol. 3, 907–909 (1996).

    Article  CAS  Google Scholar 

  30. Mozzarelli A., & Rossi, G.L. Protein function in the crystal. Annu. Rev. Biophy. Biomol. Struct. 25, 343–365 (1996).

    Article  CAS  Google Scholar 

  31. Genick, U.K. Soltis, S.M., Kuhn, P., Canestrelli, I.L. & Getzoff, E.D.: Structure at 0.85 Å resolution of an early protein photocycle intermediate. Nature 392, 206–209 (1998).

    Article  CAS  Google Scholar 

  32. Parkhurst, L.J. & Gibson, Q.H. The reaction of carbon monoxide with horse hemoglobin in solution, in erythrocytes and in crystals. J. Biol. Chem. 242, 5762– 5770 (1967).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

From the many colleagues who have contributed to this area, I single out here W. Schildkamp, V. Srajer, T.-y. Teng, Z. Ren, J. Helliwell, D. Cruickshank, D. Bourgeois and M. Wulff; I thank them all. Supported by the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Moffat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moffat, K. Ultrafast time-resolved crystallography. Nat Struct Mol Biol 5 (Suppl 8), 641–643 (1998). https://doi.org/10.1038/1333

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/1333

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing