Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proline scanning mutagenesis of a molten globule reveals non-cooperative formation of a protein's overall topology

Abstract

Small proteins generally fold cooperatively: disruption of significant parts of the folded structure leads to unfolding of the rest of the protein. We show here, using proline scanning mutagenesis, that the native-like tertiary fold of the α-lactalbumin (α-LA) molten globule is formed by the non-cooperative assembly of its constituent helices. In contrast to the drastic destabilizing effects of proline substitutions in cooperatively folded proteins, proline mutations in the molten globule appear to cause only individual helices to unfold, without significantly influencing the other helices or the overall topology. Thus, the key determinants of a protein's overall fold may not be of the all-or-none type.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kuwajima, K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins 6, 87–103 (1989).

    Article  CAS  Google Scholar 

  2. Ptitsyn, O.B. The molten globule state. in Protein Folding (ed. Creighton, T.E.) 243–300 (W. H. Freeman and Co., New York, 1992).

    Google Scholar 

  3. Dobson, C.M. Solid evidence for molten globules. Curr. Biol. 4, 636–40 (1994).

    Article  CAS  Google Scholar 

  4. Eliezer, D., Jennings, P.A., Wright, P.E., Doniach, S., Hodgson, K.O. & Tsuruta, H. The radius of gyration of an apomyoglobin folding intermediate. Science 270, 487–8 (1995).

    Article  CAS  Google Scholar 

  5. Peng, Z.-y. & Kim, P.S. A protein dissection study of a molten globule. Biochemistry 33, 2136–41 (1994).

    Article  CAS  Google Scholar 

  6. Wu, L.C., Peng, Z.-y. & Kim, P.S. Bipartite structure of the α-lactalbumin molten globule. Nature Struct. Biol. 2, 281–86 (1995).

    Article  CAS  Google Scholar 

  7. Peng, Z.-y., Wu, L.C. & Kim, P.S. Local structural preferences in the α-lactalbumin molten globule. Biochemistry 34, 3248–52 (1995).

    Article  CAS  Google Scholar 

  8. Polverino de Laureto, P., De Filippis, V., Di Bello, M., Zambonin, M. & Fontana, A. Probing the molten globule state of alpha-lactalbumin by limited proteolysis. Biochemistry 34, 12596–604 (1995).

    Article  CAS  Google Scholar 

  9. Wilson, G. et al. Vibrational Raman optical activity of alpha-lactalbumin: comparison with lysozyme, and evidence for native tertiary folds in molten globule states. J. Mol. Biol. 254, 747–60 (1995).

    Article  CAS  Google Scholar 

  10. Alexandrescu, A.T., Evans, P.A., Pitkeathly, M., Baum, J. & Dobson, C.M. Structure and dynamics of the acid-denatured molten globule state of alpha-lactalbumin: a two-dimensional NMR study. Biochemistry 32, 1707–1718 (1993).

    Article  CAS  Google Scholar 

  11. Cunningham, B.C. & Wells, J.A. High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 244, 1081–1085 (1989).

    Article  CAS  Google Scholar 

  12. Richardson, J.S. & Richardson, D.C. Amino acid preferences for specific locations at the ends of alpha helices. Science 240, 1648–52 (1988).

    Article  CAS  Google Scholar 

  13. Strehlow, K.G., Robertson, A.D. & Baldwin, R.L. Proline for alanine substitutions in the C-peptide helix of ribonuclease A. Biochemistry 30, 5810–4 (1991).

    Article  CAS  Google Scholar 

  14. Minor, D., Jr. & Kim, P.S. Measurement of the beta-sheet-forming propensities of amino acids. Nature 367, 660–663 (1994).

    Article  CAS  Google Scholar 

  15. Smith, C.K., Withka, J.M. & Regan, L. Athermodynamicscaleforthe beta-sheet forming tendencies of the amino acids. Biochemistry 33, 5510–5517 (1994).

    Article  CAS  Google Scholar 

  16. Minor, D., Jr. & Kim, P.S. Context is a major determinant of beta-sheet propensity. Nature 371, 264–267 (1994).

    Article  CAS  Google Scholar 

  17. Wood, S.J., Wetzel, R., Martin, J.D. & Hurle, M.R. Prolines and amyloidogenicity in fragments of the Alzheimer's peptide beta/A4. Biochemistry 34, 724–30 (1995).

    Article  CAS  Google Scholar 

  18. O'Neil, K.T. & De Grado, W.F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250, 646–651 (1990).

    Article  CAS  Google Scholar 

  19. Horovitz, A., Matthews, J.M. & Fersht, A.R. Alpha-helix stability in proteins. II. Factors that influence stability at an internal position. J. Mol. Biol. 227, 560–568 (1992).

    Article  CAS  Google Scholar 

  20. Sauer, U.H., San, D.P. & Matthews, B.W. Tolerance of T4 lysozyme to proline substitutions within the long interdomain alpha-helix illustrates the adaptability of proteins to potentially destabilizing lesions. J. Biol. Chem. 267, 2393–2399 (1992).

    CAS  PubMed  Google Scholar 

  21. Blaber, M. et al. Determination of alpha-helix propensity within the context of a folded protein. Sites 44 and 131 in bacteriophage T4 lysozyme. J. Mol. Biol. 235, 600–624 (1994).

    Article  CAS  Google Scholar 

  22. Baum, J., Dobson, C.M., Evans, P.A. & Hanley, C. Characterization of a partly folded protein by NMR methods: studies on the molten globule state of guinea pig alpha-lactalbumin. Biochemistry 28, 7–13 (1989).

    Article  CAS  Google Scholar 

  23. Chyan, C.L., Wormald, C., Dobson, C.M., Evans, P.A. & Baum, J. Structure and stability of the molten globule state of guinea-pig alpha-lactalbumin: a hydrogen exchange study. Biochemistry 32, 5681–5691 (1993).

    Article  CAS  Google Scholar 

  24. Schulman, B.A., Peng, Z.-y., Redfield, C., Dobson, C.M. & Kim, P.S. Different subdomains are most protected from hydrogen exchange in the molten globule and native states of α-lactalbumin. J. Mol. Biol. 253, 651–657 (1995).

    Article  CAS  Google Scholar 

  25. Nozaka, M., Kuwajima, K., Nitta, K. & Sugai, S. Detection and characterization of the intermediate on the folding pathway of human alpha-lactalbumin. Biochemistry 17, 3753–3758 (1978).

    Article  CAS  Google Scholar 

  26. Acharya, K.R., Ren, J.S., Stuart, D.I., Phillips, D.C. & Fenna, R.E. Crystal structure of human alpha-lactalbumin at 1.7 Å resolution. J. Mol. Biol. 221, 571–581 (1991).

    Article  CAS  Google Scholar 

  27. Siddiqui, A.S. & Barton, G.J. Continuous and discontinuous domains: an algorithm for the automated generation of reliable protein domain definitions. Prot Sci. 4, 872–884 (1995).

    Article  CAS  Google Scholar 

  28. Xie, D., Bhakuni, V. & Freire, E. Calorimetric determination of the energetics of the molten globule intermediate in protein folding: apo-α-lactalbumin. Biochemistry 30, 10673–10678 (1991).

    Article  CAS  Google Scholar 

  29. Yutani, K., Ogasahara, K. & Kuwajima, K. Absence of the thermal transition in apo-alpha-lactalbumin in the molten globule state. A study by differential scanning microcalorimetry. J. Mol. Biol. 228, 347–350 (1992).

    Article  CAS  Google Scholar 

  30. Jennings, P.A. & Wright, P.E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science 262, 892–8926 (1993).

    Article  CAS  Google Scholar 

  31. Kreimer, D.I., Szosenfogel, R., Goldfarb, D., Silman, I. & Weiner, L. Two-state transition between molten globule and unfolded states of acetylcholinesterase as monitored by electron paramagnetic resonance spectroscopy. Proc. Natl. Acad. Sci. USA 91, 12145–12149 (1994).

    Article  CAS  Google Scholar 

  32. Chan, H.S., Bromberg, S. & Dill, K.A. Models of cooperativity in protein folding. Philos. Trans. R. Soc. Lond. B Biol. Sci. 348, 61–70 (1995).

    Article  CAS  Google Scholar 

  33. Ptitsyn, O.B., Bychkova, V.E. & Uversky, V.N. Kinetic and equilibrium folding intermediates. Philos. Trans. R. Soc. Lond. BB iol. Sci. 348, 35–41 (1995).

    Article  CAS  Google Scholar 

  34. Kiefhaber, T. & Baldwin, R.L. Intrinsic stability of individual alpha helices modulates structure and stability of the apomyoglobin molten globule form. J. Mol. Biol. 252, 122–132 (1995).

    Article  CAS  Google Scholar 

  35. Loh, S.N., Kay, M.S. & Baldwin, R.L. Structure and stability of a second molten globule intermediate in the apomyoglobin folding pathway. Proc. Natl. Acad. Sci. USA 92, 5446–5450 (1995).

    Article  CAS  Google Scholar 

  36. Marmorino, J.L. & Pielak, G.J. A native tertiary interaction stabilizes the A state of cytochromec. Biochemistry 34, 3140–3143 (1995).

    Article  CAS  Google Scholar 

  37. Shimizu, A., Ikeguchi, M. & Sugai, S. Unfolding of the molten globule state of alpha-lactalbumin studied by 1H NMR. Biochemistry 32, 13198–203 (1993).

    Article  CAS  Google Scholar 

  38. Dill, K.A. Dominant forces in protein folding. Biochemistry 29, 7133–55 (1990).

    Article  CAS  Google Scholar 

  39. Kay, M.S. & Baldwin, R.L. Packing interactions in the apomyoglobin folding intermediate. Nature Struct. Biol. 3, 439–45 (1996).

    Article  CAS  Google Scholar 

  40. Bai, Y., Sosnick, T.R., Mayne, L. & Englander, S.W. Protein folding intermediates: native-state hydrogen exchange. Science 269, 192–197 (1995).

    Article  CAS  Google Scholar 

  41. Dill, K.A. & Shortle, D. Denatured states of proteins. Annu. Rev. Biochem. 60, 795–825 (1991).

    Article  CAS  Google Scholar 

  42. Dobson, C.M. Unfolded proteins, compact states and molten globules. Curr. Opin. Struct. Biol. 2, 6–12 (1992).

    Article  CAS  Google Scholar 

  43. Shortle, D. Denatured states of proteins and their roles in folding and stability. Curr. Opin. Struct. Biol. 3, 66–74 (1993).

    Article  CAS  Google Scholar 

  44. Lumb, K.J. & Kim, P.S. Formation of a hydrophobic cluster in denatured bovine pancreatic trypsin inhibitor. J. Mol. Biol. 236, 412–420 (1994).

    Article  CAS  Google Scholar 

  45. Agashe, V.R., Shastry, M.C.R. & Udgaonkar, J.B. Initial hydrophobic collapse in the folding of barstar. Nature 377, 754–757 (1995).

    Article  CAS  Google Scholar 

  46. Oliveberg, M. & Fersht, A. Thermodynamics of transient conformations in the folding pathway of barnase: reorganization of the folding intermediate at low pH. Biochemistry 35, 2738–2749 (1996).

    Article  CAS  Google Scholar 

  47. Hughson, F.M., Barrick, D. & Baldwin, R.L. Probing the stability of a partly folded apomyoglobin intermediate by site-directed mutagenesis. Biochemistry 30, 4113–4118 (1991).

    Article  CAS  Google Scholar 

  48. Minor, D.L., Jr. & Kim, P.S. Context-dependent secondary structure formation of a designed protein sequence. Nature 380, 730–734 (1996).

    Article  CAS  Google Scholar 

  49. Lau, K.F. & Dill, K.A. Theory for protein mutability and biogenesis. Proc. Natl. Acad. Sci. USA 87, 638–642 (1990).

    Article  CAS  Google Scholar 

  50. Behe, M.J., Lattman, E.E. & Rose, G.D. The protein-folding problem: the native fold determines packing, but does packing determine the native fold? Proc. Natl. Acad. Sci. USA 88, 4195–4199 (1991).

    Article  CAS  Google Scholar 

  51. Bowie, J.U., Luthy, R. & Eisenberg, D. A method to identify protein sequences that fold into a known three-dimensional structure. Science 253, 164–170 (1991).

    Article  CAS  Google Scholar 

  52. Xiong, H., Buckwalter, B.L., Shieh, H.M. & Hecht, M.H. Periodicity of polar and nonpolar amino acids is the major determinant of secondary structure in self-assembling oligomeric peptides. Proc. Natl. Acad. Sci. USA 92, 6349–6353 (1995).

    Article  CAS  Google Scholar 

  53. Ptitsyn, O.B. How does protein synthesis give rise to the 3D-structure? FEBS Letts 285, 176–181 (1991).

    Article  CAS  Google Scholar 

  54. Edelhoch, H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6, 1948–1954 (1967).

    Article  CAS  Google Scholar 

  55. Laue, T.M., Shah, B.D., Ridgeway, T.M. & Pelletier, S.L. Computer-aided interpretation of analytical sedimentation data for proteins. in Analytical Ultracentrifugaton in Biochemistry and Polymer Science (eds S.E. Harding, A.J. Rowe & J.C. Horton) 90–125 (The Royal Society of Chemistry, Cambridge, 1992).

    Google Scholar 

  56. Chen, Y.H., Yang, J.T. & Chau, K.H. Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry 13, 3350–3359 (1974).

    Article  CAS  Google Scholar 

  57. Ellman, G.L. Tissue sulphydryl groups. Arch. Biochem. Biophys. 82, 70–77 (1959).

    Article  CAS  Google Scholar 

  58. Priestle, J.P. RIBBON: A stereo cartoon drawing program for proteins. J. Appl. Crystallogr. 21, 572–576 (1988).

    Article  Google Scholar 

  59. Woody, R.W. Circular Dichroism of Peptides. in The Peptides: Analysis, Synthesis, Structure (ed. V.J. Hruby) 15–114 (Academic Press, Orlando, 1985).

    Google Scholar 

  60. Manning, M.C. & Woody, R.W. Theoretical study of the contribution of aromatic side chains to the circular dichroism of basic bovine pancreatic trypsin inhibitor. Biochemistry 28, 8609–8613 (1989).

    Article  CAS  Google Scholar 

  61. Chakrabartty, A., Kortemme, T., Padmanabhan, S. & Baldwin, R.L. Aromatic side-chain contribution to far-ultraviolet circular dichroism of helical peptides and its effect on measurement of helix propensities. Biochemistry 32, 5560–5565 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulman, B., Kim, P. Proline scanning mutagenesis of a molten globule reveals non-cooperative formation of a protein's overall topology. Nat Struct Mol Biol 3, 682–687 (1996). https://doi.org/10.1038/nsb0896-682

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0896-682

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing