Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An enzyme–substrate complex involved in bacterial cell wall biosynthesis

Abstract

The crystal structure of UDP-N-acetylenolpyruvylglucosamine reductase in the presence of its substrate, enolpyruvyl-UDP-N-acetylglucosamine, has been solved to 2.7 Å resolution. This enzyme is responsible for the synthesis of UDP-N-acetylmuramic acid in bacterial cell wall biosynthesis and consequently provides an attractive target for the design of antibacterial agents. The structure reveals a novel flavin binding motif, shows a striking alignment of the flavin with the substrate, and suggests a catalytic mechanism for the reduction of this unusual enol ether.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bugg, T.D.H. & Walsh, C.T. Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: Enzymology, antibiotics and antibiotic resistance. Nat. prod. Rep. 199–215 (1993).

    Article  CAS  Google Scholar 

  2. Brown, E.D., Vivas, E.I., Walsh, C.T. & Kolter, R. MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Esherichia coli. J. Bact. in the press, (1995).

    Google Scholar 

  3. Marquardt, J.L., Siegele, D.S., Kolter, R. & Walsh, C.T. Cloning and sequencing of E. coli murZ and purification of its product UDP-N-acetylglucosamine enolpyruvyl transferase to homogeneity. J. Bact. 174, 5748–5752 (1992).

    Article  CAS  Google Scholar 

  4. Kahan, F.M., Kahan, J.S., Cassidy, P.J. & Kropp, H. Mechanism of action of fosfomycin (phosphonomycin). Ann. N. Y. Acad. Sci. 235, 364–386 (1974).

    Article  CAS  Google Scholar 

  5. Benson, T.E., Marquardt, J.L., Marquardt, A.C., Etzkorn, F.A. & Walsh, C.T., Overexpression, purification, and mechanistic study of UDP-N-acetylenolpyruvylglucosamine reductase. Biochemistry 32, 2024–2030 (1993).

    Article  CAS  Google Scholar 

  6. Pucci, M.J., Discotto, L.F. & Dougherty, T.J. Cloning and identification of the Escherichia coli murB DNA sequence, which encodes UDP-N-acetylenolpyruvoylglucosamine reductase. J. Bact. 174, 1690–1693 (1992).

    Article  CAS  Google Scholar 

  7. Dhalla, A.M., Yanchunas, J., Ho, H.T., Falk, P.J., Villafranca, J.J. & Robertson, J.G. Steady-state kinetic mechanism of Eschericia coli UDP-N-acetylenolpyruvylglucosamine reductase. Biochemistry 34, 5390–5402 (1995).

    Article  CAS  Google Scholar 

  8. Benson,T.E., Walsh, C.T. & Hogle, J.M. Crystallization and preliminary X-ray crystallographic studies of UDP-N-acetylenolpyruvylglucosamine reductase. Protein Sci. 3, 1125–1127 (1994).

    Article  CAS  Google Scholar 

  9. Baumann, U., Wu, S., Flaherty, K.M. & McKay, D.B. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J. 12, 3357–3364 (1993).

    Article  CAS  Google Scholar 

  10. Yoder, M.D., Lietzke, S.E. & Jurnak, F. Unusual structural features in the parallel β-helix in pectate lyases. Structure 1, 241–251 (1993).

    Article  CAS  Google Scholar 

  11. Orengo, C.A. & Thorton, J.M. Alpha plus beta folds revisited: some favoured motifs. Structure 1, 105–120 (1993).

    Article  CAS  Google Scholar 

  12. Anwar, R.A. & Vlaovic, M. Purification of UDP-N-acetylenolpyruvoylglucosamine reductase from Escherichia coli by affinity chromatography, its subunit structure and the absence of flavin as the prosthetic group. Can. J. Biochem. 57, 188–196 (1979).

    Article  CAS  Google Scholar 

  13. Bauer, A.J., Rayment, I., Frey, P.A. & Holden, H.M. The molecular structure of UDP-galactose-4-epimerase from Escherichia coli determined at 2.5 Å resolution. Proteins 12, 372–381 (1992).

    Article  CAS  Google Scholar 

  14. Vrielink, A., Rüger, W., Driessen, H.P.C. & Freemont, P.S. Crystal structure of the DNA modifying enzyme β-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J. 13, 3413–3422 (1994).

    Article  CAS  Google Scholar 

  15. Dombrosky, P.M., Schmid, M.B. & Young, K.D. Sequence divergence of the murB and rrfB genes from Escherichia coli and Salmonella typhimurium. Arch. Microbiol. 161, 501–507 (1994).

    Article  CAS  Google Scholar 

  16. Lindqvist, Y. & Branden, C. The active site of spinach glycolate oxidase. J. biol. Chem. 264, 3624–3628 (1989).

    CAS  PubMed  Google Scholar 

  17. Lindqvist, Y., Branden, C.-I., Matthews, F.S. & Lederer, F. Spinach glycolate oxidase and yeast flavocytochrome b2 are structurally homologous and evolutionary related enzymes with distinctly different function and flavin mononucleotide binding. J. biol. Chem. 266, 3198–3207 (1991).

    CAS  PubMed  Google Scholar 

  18. Rossmann, M.G., Moras, D. & Olsen, K.W. Chemical and biological evolution of nucleotide-binding protein. Nature 250, 194–199 (1974).

    Article  CAS  Google Scholar 

  19. Wierenga, R.K., Maeyer, M.C.H. & Hoi, W.G.J. Interaction of pyrophosphate moieties with α-helices in dinucleotide binding proteins. Biochemistry 24, 1346–1357 (1985).

    Article  CAS  Google Scholar 

  20. Karplus, P.A., Daniels, M.J. & Herriott, J.R. Atomic structure of ferredoxin-NADP+ reductase: Prototype for a structurally novel flavoenzyme family. Science 251, 60–66 (1991).

    Article  CAS  Google Scholar 

  21. Correll, C.C., Batie, C.J., Ballou, D.P. & Ludwig, M.L. Pthalate dioxygenase reductase: A modular structure for electron transfer from pyridine nucleotides to [2Fe-2S]. Science 258, 1604–1610 (1992).

    Article  CAS  Google Scholar 

  22. Manstein, D.J., Pai, E.F., Schopfer, L.M. & Massey, V. Absolute stereochemistry of flavins in enzyme-catalyzed reactions. Biochemistry 25, 6807–6816 (1986).

    Article  CAS  Google Scholar 

  23. Ghisla, S. & Massey, V. Mechansims of flavoprotein-catalyzed reactions. Eur. J. Biochem. 181, 1–17 (1989).

    Article  CAS  Google Scholar 

  24. Schreuder, H.A., Hoi, W.G.J. & Drenth, J. Analysis of the active site of the flavoprotein p-hydroxybenzoate hydrolyase and some ideas with respect to its reaction mechanism. Biochemistry 29, 3101–3108 (1990).

    Article  CAS  Google Scholar 

  25. Pai, E.F. & Schulz, G.E. The catalytic mechanism of glutathione reductase as derived from X-ray diffraction analyses of reaction intermediates. J. biol. Chem. 258, 1752–1757 (1983).

    CAS  PubMed  Google Scholar 

  26. Schiering, N., Kabsch, W., Moore, M.J., Distefano, M.D., Walsh, C.T. & Pai, E.F. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607. Nature 352, 168–171 (1991).

    Article  CAS  Google Scholar 

  27. Stehle, T., Claiborne, A. & Schulz, G.E. NADH binding site and catalysis of NADH peroxidase. Eur. J. Biochem. 221, 221–226 (1993).

    Article  Google Scholar 

  28. Mattevi, A., Schierbeek, A.J. & Hoi, W.G.J. Refined crystal structure of lipoamide dehydrogenase from Azotobacter vinelandii at 2.2 Å resolution. J. molec. Biol. 220, 975–994 (1991).

    Article  CAS  Google Scholar 

  29. Gerlt, J.A. & Gassman, P.G. Understanding enzyme-catalyzed proton abstraction from carbon acids: Details of stepwise mechanisms for β-elimination reactions. J. Amer. Chem. Soc. 114, 5928–5934 (1992).

    Article  CAS  Google Scholar 

  30. Gerlt, J.A. & Gassman, P.G. Understanding the rates of certain enzyme-catalyzed reactions: Proton abstraction from carbon acids, acyl-transfer reactions, and displacement reactions of phophodiesters. Biochemistry 32, 11943–11952 (1993).

    Article  CAS  Google Scholar 

  31. Veyriées, A. & Jeanloz, R.W. Absolute configuration of the carboxyethyl(lactyl)side chain of muramic acid [2-amino-3-O-(d-1-carbonxyethyl)-2-deoxy-d-glucose]. Biochemistry 9, 4153–4159 (1970).

    Article  Google Scholar 

  32. Van Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. & Clardy, J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J. molec. Biol. 229, 105–124 (1993).

    Article  CAS  Google Scholar 

  33. Gruner, S.M. X-ray detectors for macromolecular crystallography. Curr. Opin. struct. Biol. 4, 765–769 (1994).

    Article  CAS  Google Scholar 

  34. Otwinowski, Z. In Data Collection and Processing (eds. Sawyer, L., Isaacs, N. & Bailey, S.) 56–62 (SERC Daresbury Laboratory, Warrington; 1993).

    Google Scholar 

  35. Collaborative Computational Project No. 4. The CCP4 suite: Programs for protein crystallography. Acta crystallogr. D 50, 760–763 (1994).

  36. Otwinowski, Z. in Isomorphous replacement and anomalous scattering, Proceedings of the CCP4 study weekend (eds. Wolf, W., Evans, P.R. & Leslie, A.G.W.) 80–86 (SERC Daresbury Laboratory, Warrington, 1991).

    Google Scholar 

  37. Ramakrishnan, V., Finch, J.T., Graziano, V., Lee, P.L. & Sweet, R.M. Crystal structure of gobular domain of histone H5 and its implications for nucleosome binding. Nature 362, 219–223 (1993).

    Article  CAS  Google Scholar 

  38. Tesmer, J.J.G., Stemmler, T.L., Penner-Hahn, J.E., Davisson, V.J. & Smith, J.L., X-ray analysis of Escherichia coli GMP synthetase: Determination of anomalous scattering factors for a cysteinyl mercury derivative. Proteins 18, 394–403 (1994).

    Article  CAS  Google Scholar 

  39. Wang, B.C. Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol. 115, 90–112 (1985).

    Article  CAS  Google Scholar 

  40. Zhang, K.Y.J. & Main, P. Histogram matching as a new density modification technique for phase refinement and extension of protein molecules. Acta crystallogr. A46, 41–46 (1990).

    Article  CAS  Google Scholar 

  41. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods of building protein models in electron density maps and the location of errors in these models. Acta crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  42. Brünger, A.T. X-PLOR version 3.1: A System for X-ray Crystallography and NMR (Yale Univ. Press, New Haven; 1992).

    Google Scholar 

  43. Read, R.J. Improved fourier coefficients for maps using phases from partial structures with errors. Acta crystallogr. A42, 140–149 (1986).

    Article  CAS  Google Scholar 

  44. Brünger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  Google Scholar 

  45. Lüthy, R., Bowie, J.U. & Eisenberg, D. Assessment of protein models with three-dimensional profiles. Nature 356, 83–85 (1992).

    Article  Google Scholar 

  46. Laskowski, R.A., MacAurthur, M.W., Moss, D.S. & Thorton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  47. Kraulis, P.J. Molscript: a program to produce both detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benson, T., Filman, D., Walsh, C. et al. An enzyme–substrate complex involved in bacterial cell wall biosynthesis. Nat Struct Mol Biol 2, 644–653 (1995). https://doi.org/10.1038/nsb0895-644

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0895-644

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing