Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structural basis of aspirin activity inferred from the crystal structure of inactivated prostaglandin H2 synthase

Abstract

Aspirin exerts its anti-inflammatory effects through selective acetylation of serine 530 on prostaglandin H2 synthase (PGHS). Here we present the 3.4 Å resolution X-ray crystal structure of PGHS isoform-1 inactivated by the potent aspirin analogue 2-bromoacetoxy-benzoic acid. Acetylation by this analogue abolishes cyclooxygenase activity by steric blockage of the active-site channel and not through a large conformational change. We observe two rotameric states of the acetyl-serine side chain which block the channel to different extents, a result which may explain the dissimilar effects of aspirin on the two PGHS isoforms. We also observe the product salicylic acid binding at a site consistent with its antagonistic effect on aspirin activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Vane, J.R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature new Biol. 231, 232–235 (1971).

    Article  CAS  PubMed  Google Scholar 

  2. Smith, W.L. & Marnett, L.J. in Metal Ions in Biological Systems (eds. Sigal, H. & Sigel, A.) 163–199 (Marcel Dekker, Inc., New York; 1994).

    Google Scholar 

  3. Garavito, R.M., Picot, D. & Loll, P.J. Prostaglandin H synthase. Curr. Opin. Struct. Biol. 4, 529–535 (1994).

    Article  CAS  Google Scholar 

  4. Roth, G.J., Stanford, N. & Majerus, P.W. Acetylation of prostaglandin synthase by aspirin. Proc. natn. Acad. Sci. U.S.A. 72, 3073–3076 (1975).

    Article  CAS  Google Scholar 

  5. Roth, G.J., Machuga, E.T. & Ozols, J. Isolation and covalent structure of the aspirin-modified, active-site region of prostaglandin synthase. Biochemistry 22, 4672–4675 (1983).

    Article  CAS  PubMed  Google Scholar 

  6. DeWitt, D.L. et al. The aspirin and heme-binding sites of ovine and murine prostaglandin endoperoxide synthases. J. Biol. Chem. 265, 5192–5198 (1990).

    CAS  PubMed  Google Scholar 

  7. Loll, P.J. & Garavito, R.M. The isoforms of cyclooxygenase: structure and function. Exp. Opin. Invest. Drugs 3, 1171–1180 (1994).

    CAS  Google Scholar 

  8. Hla, T., Ristimaki, A., Appleby, S. & Barriocanal, J.G. Cyclooxygenase gene expression in inflammation and angiogenesis. Ann. N. Y. Acad. Sci. 696, 197–204 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Lecomte, M., Laneuville, O., Ji, C., DeWitt, D.L. & Smith, W.L. Acetylation of human prostaglandin endoperoxide synthase-2 (cydooxygenase-2) by aspirin. J. biol. Chem. 269, 13207–13215 (1994).

    CAS  PubMed  Google Scholar 

  10. Holtzman, M.J., Turk, J. & Shornick, L.P. Identification of a pharmacologically distinct prostaglandin H synthase in cultured epithelial cells. j. biol. Chem. 267, 21438–21445 (1992).

    CAS  PubMed  Google Scholar 

  11. O'Neill, G.P. et al. Overexpression of human prostaglandin G/H synthase-1 and -2 by recombinant vaccinia virus: Inhibition by nonsteroidal antiinflammatory drugs and biosynthesis of 15-hydroxyeicosatetraenoic acid. Mol. Pharmacol. 45, 245–254 (1994).

    CAS  PubMed  Google Scholar 

  12. Meade, A.A., Smith, W.L. & DeWitt, D.L. Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal antiinflammatory drugs. J. biol. Chem. 268, 6610–6614 (1993).

    CAS  PubMed  Google Scholar 

  13. Mancini, J.A., O'Neill, G.P., Bayly, C. & Vickers, P.J. Mutation of serine-516 in human prostaglandin G/H synthase-2 to methionine or aspirin acetylation of this residue stimulates 15-R-HETE synthesis. FEBS Lett. 342, 33–37 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Picot, D., Loll, P.J. & Garavito, R.M., X-ray crystal structure of the membrane protein prostaglandin H2synthase-1. Nature 367, 243–249 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Wheatley, P.J. The crystal and molecular structure of aspirin. J. Chem. Soc. 1964, 6036–6048 (1964).

    Article  Google Scholar 

  16. Smith, W.L., Eling, T.E., Kulmacz, R.J., Marnett, L.J. & Tsai, A. Tyrosyl radicals and their role in hydroperoxide-dependent activation and inactivation of prostaglandin endoperoxide synthase. Biochemistry 31, 3–7 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Ruf, H.H., Raab-Brill, U. & Blau, C. A model for the catalytic mechanism of prostaglandin endoperoxide synthase. Biochem. Soc. Trans. 21, 739–744 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Shimokawa, T., Kulmacz, R.J., DeWitt, D.L. & Smith, W.L. Tyrosine 385 of prostaglandin endoperoxide synthase is required for cyclooxygenase catalysis. J. biol. Chem. 265, 20073–20076 (1990).

    CAS  PubMed  Google Scholar 

  19. Shimokawa, T. & Smith, W.L. Prostaglandin endoperoxide synthase: The aspirin acetylation region. J. biol. Chem. 267, 12387–12392 (1992).

    CAS  PubMed  Google Scholar 

  20. Rome, L.H. & Lands, W.E.M. Structural requirements for time-dependent inhibition of prostaglandin biosynthesis by anti-inflammatory drugs. Proc. natn. Acad. Sci. U.S.A. 72, 4863–4865 (1975).

    Article  CAS  Google Scholar 

  21. Morrison, J.F. & Walsh, C.T. The behavior and significance of slow-binding enzyme inhibitors. Adv. Enz. Relat. Areas Mol. Biol. 61, 201–301 (1988).

    CAS  Google Scholar 

  22. Rotilio, D., Joseph, D., Hatmi, M., & Vargaftig, B.B. Structural requirements for preventing the aspirin- and the arachidonate-induced inactivation pf platelet cyclooxygenase:Additional evidence for distict enzymatic sites. Eur. J. Pharmacol. 97, 197–208 (1984).

    Article  CAS  PubMed  Google Scholar 

  23. Humes, J.L., Winter, C.A., Sadowski, S.J. & Kuehl, R.A.J. Multiple sites on prostaglandin cyclooxygenase are determinants in the action of nonsteroidal antiinflammatory agents. Proc. natn. Acad. Sci. U.S.A. 78, 2053–2056 (1981).

    Article  CAS  Google Scholar 

  24. de Gaetano, G., Cerletti, C., Dejana, E. & Latini, R. Pharmacology of platelet inhibition in humans: Implications of the salicylate-aspirin interaction. Circulation 72, 1185–1193 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Patrignani, P., Filabozzi, P. & Patrono, C. Selective cumulative inhibition of platelet thromboxane production by low-dose aspirin in healthy subjects. J. clin. Invest. 69, 1366–1372 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Merino, J., Livio, M., Rajtar, G. & de Gaetano, G. Salicylate reverses in vitro aspirin inhibition of rat platelet and vascular prostaglandin generation. Biochem. Pharmacol. 29, 1093–1096 (1980).

    Article  CAS  PubMed  Google Scholar 

  27. Vargaftig, B.B. The inhibition of cyclo-oxygenase of rabbit platelets by aspirin is prevented by salicylic acid and by phenanthrolines. Eur. J. Pharmacol. 50, 231–241 (1978).

    Article  CAS  PubMed  Google Scholar 

  28. Cerletti, C., Livio, M. & de Gaitano, G. Non-steroidal anti-inflammatory drugs react with two sites on platelet cyclo-oxygenase: evidence from in vivo drug interaction studies in rats. Biochim. Biophys. Acta 714, 122–128 (1982).

    Article  CAS  PubMed  Google Scholar 

  29. Messerschmidt, A. & Pflugrath, J.W. Crystal orientation and X-ray pattern prediction for area-detector diffractometer systems in macromolecular crystallography. J. appl. Cryst. 20, 306–315 (1987).

    Article  CAS  Google Scholar 

  30. Kabsch, W. Evaluation of single crystal X-ray diffraction data from a position sensitive detector. J. appl. Cryst. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  31. Collaborative Computational Project, N.4. The CCP4 Suite: Programs for Protein Crystallography. Acta cryst. D50, 760–763 (1994).

  32. Brunger, A.T. X-PLOR Manual, Version 3.1 (Yale University Press, New Haven; 1992).

    Google Scholar 

  33. Kulmacz, R.J. & Lands, W.E.M. in Prostaglandins and Related Substances, A Practical Approach (eds. Benedetto, C, McDonald-Gibson, R.G., Nigam, S. & Slater, T.F.) 209–227 (IRL Press, Washington, DC; 1987).

    Google Scholar 

  34. Jones, T.A. in Computational Crystallography (ed. D. Sayre), 303–317 (Oxford University Press, Oxford; 1982).

    Google Scholar 

  35. Evans, S.V. SETOR: Hardware-lighted three-dimensional solid model representations of macromolecules. J. molec. Graphics 11, 134–138 (1993).

    Article  CAS  Google Scholar 

  36. Kraulis, P.J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loll, P., Picot, D. & Garavito, R. The structural basis of aspirin activity inferred from the crystal structure of inactivated prostaglandin H2 synthase. Nat Struct Mol Biol 2, 637–643 (1995). https://doi.org/10.1038/nsb0895-637

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0895-637

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing