Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein stability effects of a complete set of alanine substitutions in Arc repressor

An Erratum to this article was published on 01 November 1994

Abstract

The equilibrium stabilities of a complete set of single alanine-substitution mutants of the Arc repressor of bacteriophage P22 have been determined by thermal and urea denaturation experiments. Only half the alanine substitutions cause significant changes in stability, with the most deleterious mutations affecting side chains in the hydrophobic core or in salt bridges and hydrogen bonds which are protected from solvent. The five mutations that are most destabilizing affect a cluster of core residues that seem to form a structural foundation for Arc.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Goldenberg, D.P. Genetic studies of protein stability andmechanisms of folding. A. Rev. Biophys. biophys. Chem. 17, 481–507 (1988)

    Article  CAS  Google Scholar 

  2. Alber, T. Mutational effects on protein stability. A. Rev. Biochem. 58, 765–798 (1989)

    Article  CAS  Google Scholar 

  3. Dill, K.A. & Shortle D. Denatured states of proteins. A. Rev. Biochem. 60, 795–825 (1991)

    Article  CAS  Google Scholar 

  4. Matthews, B.W. Structural and genetic analysis of protein stability. A. Rev. Biochem. 62, 139–160 (1993)

    Article  CAS  Google Scholar 

  5. Shortle, D. Denatured states of proteins and their roles in folding and stability. Curr. Opin. struct Biol. 3, 66–74 (1993)

    Article  CAS  Google Scholar 

  6. Fersht, A.R. & Serrano, L. Principles of protein stability derived from protein engineering experiments. Curr. Opin. struct. Biol. 3, 75–83 (1993)

    Article  CAS  Google Scholar 

  7. Susskind, M.M. & Youderian, P. Bacteriophage P22 antirepressor and its control. in Lambda II. (eds. Hendrix, R.W., Roberts, J.W., Stahl, F.W., & Weisberg, R.A.) 347–364 (Cold Spring Harbor Laboratory, New York, 1983).

    Google Scholar 

  8. Knight, K.L., Bowie, J.U., Vershon, A.K., Kelley, R.D. & Sauer, R.T. The Arc and Mnt repressors: a new class of sequence specific DNA-binding protein. J. biol. Chem. 264, 3639–3642 (1989)

    CAS  PubMed  Google Scholar 

  9. Vershon, A.K., Bowie, J.U., Karplus, T.M., & Sauer, R.T. Isolation and analysis of Arc repressor mutants: evidence for an unusual mechanism of DNA binding. Proteins 1, 302–311 (1986)

    Article  CAS  Google Scholar 

  10. Bowie, J.U. & Sauer, R.T. Identifying determinants of folding and activity for a protein of unknown structure. Proc. natn. Acad. Sci. U.S.A. 86, 2152–2156 (1989)

    Article  CAS  Google Scholar 

  11. Bowie, J.U. & Sauer, R.T. Equilibrium dissociation and unfolding of the Arc repressor dimer. Biochemistry 28, 7139–7143 (1989)

    Article  CAS  Google Scholar 

  12. Milla, M.E. & Sauer, R.T. P22 Arc repressor: folding kinetics of a single domain, dimeric protein. Biochemistry 33, 1125–1133 (1994)

    Article  CAS  Google Scholar 

  13. Breg, J.N., van Opheusden, J.H.J., Burgering, M.J., Boelens, R., & Kaptein, R. Structure of Arc repressor in solution: evidence for a family of β -sheet DNA-binding proteins. Nature 346, 586–589 (1990)

    Article  CAS  Google Scholar 

  14. Bonvin, A.M., Vis, H., Breg, J.N., Burgering, M.J., Boelens, R. & Kaptein, R. Nuclear magnetic resonance solution structure of the Arc repressor using relaxation matrix calculations. J. molec. Biol. 236 328–341 (1994)

    Article  CAS  Google Scholar 

  15. Raumann, B.E., Rould, M.A., Pabo, C.O. & Sauer, R.T. DNA Recognition by β-sheets in the Arc repressor-operator crystal structure. Nature 367, 754–757 (1994)

    Article  CAS  Google Scholar 

  16. Milla, M.E., Brown, B.M. & Sauer, R.T. P22 Arc repressor: enhanced expression of unstable mutants by addition of polar C-terminal sequences. Prot. Sci. 2, 2198–2205 (1993)

    Article  CAS  Google Scholar 

  17. Becktel, W.J. & Schellman, J.A. Protein stability curves. Biopolymers 26, 1859–1877 (1987)

    Article  CAS  Google Scholar 

  18. Serrano, L., Kellis, J.T., Cann, P., Matouschek, A. & Fersht, A. The folding of an enzyme II. Substructure of barnase and the contribution of different interactions to protein stability. J. molec. Biol. 224, 783–804 (1992)

    Article  CAS  Google Scholar 

  19. Brown, B.M., Milla, M.E., Smith, T.L. & Sauer, R.T. Scanning mutagenesis of Arc repressor as a functional probe of operator recognition. Nature struct. Biol. 1, 164–168 (1994)

    Article  CAS  Google Scholar 

  20. Rosenberg, A.H., Lade, B.N., Chui, D.-s., Lin, S.-W., Dunn, J.J. & Studier, F.W. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene 56, 125–135 (1987)

    Article  CAS  Google Scholar 

  21. Studier, F.W. & Moffatt, B.A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. molec. Biol. 189, 113–130 (1986)

    Article  CAS  Google Scholar 

  22. Brown, B.M., Bowie, J.U. & Sauer, R.T. Arc repressor is tetrameric when bound to operator DNA. Biochemistry 29, 11189–11195 (1990)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milla, M., Brown, B. & Sauer, R. Protein stability effects of a complete set of alanine substitutions in Arc repressor. Nat Struct Mol Biol 1, 518–523 (1994). https://doi.org/10.1038/nsb0894-518

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0894-518

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing