Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

X-ray snapshots of serine protease catalysis reveal a tetrahedral intermediate

Abstract

Studies on the catalytic mechanism and inhibition of serine proteases are widely used as paradigms for teaching enzyme catalysis. Ground-breaking work on the structures of chymotrypsin and subtilisin led to the idea of a conserved catalytic triad formed by the active site Ser, His and Asp residues. An oxyanion hole, consisting of the peptide amide of the active site serine and a neighbouring glycine, was identified, and hydrogen bonding in the oxyanion hole was suggested to stabilize the two proposed tetrahedral intermediates on the catalytic pathway. Here we show electron density changes consistent with the formation of a tetrahedral intermediate during the hydrolysis of an acyl–enzyme complex formed between a natural heptapeptide and elastase. No electron density for an enzyme–product complex was observed. The structures also suggest a mechanism for the synchronization of hydrolysis and peptide release triggered by the conversion of the sp2 hybridized carbonyl carbon to an sp3 carbon in the tetrahedral intermediate. This affects the location of the peptide in the active site cleft, triggering the collapse of a hydrogen bonding network between the peptide and the β-sheet of the active site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hydrolsysis of the acyl–enzyme intermediate formed between β-casomorphin-7 (YPFVEPI) and porcine pancreatic elastase.
Figure 2: Refined 2mFo − DFc electron density for the acyl–enzyme intermediate and the assigned tetrahedral intermediate.
Figure 3: Isotropic temperature factors in the acyl–enzyme complex and in the tetrahedral intermediate (b) formed between porcine pancreatic elastase and human β-casomorphin-7.
Figure 4: Structural changes within the peptide binding pocket during catalysis.

Similar content being viewed by others

References

  1. Fersht, A.R. Enzyme structure and mechanism (Freeman, New York; 1985).

    Google Scholar 

  2. Jencks, W.P. Catalysis in chemistry and enzymology (McGraw-Hill, London; 1969).

    Google Scholar 

  3. Pauling, L. Chem. Eng. News 24, 1375–1377 (1946).

    Article  CAS  Google Scholar 

  4. Wilmouth, R.C. et al. Nature Struct. Biol. 4, 456–462 (1997).

    Article  CAS  Google Scholar 

  5. Wurtele, M., Hahn, M., Hilpert, K. & Hohne, W. Acta Crystallogr. D 56, 520–523 (2000).

    Article  CAS  Google Scholar 

  6. Lamzin, V. S. & Wilson, K. S. Acta Crystallogr. D 49, 129–147 (1993).

    Article  CAS  Google Scholar 

  7. Read, R.J. Acta Crystallogr A. 42, 140–149 (1986).

    Article  Google Scholar 

  8. Singer, P.T., Smalås, A., Carty, R.P., Mangel, W.F. & Sweet, R.M. Science 259, 669–673 (1993).

    Article  CAS  Google Scholar 

  9. Perona, J.J., Craik, C.S. & Fletterick, R.J. Science 261, 620 (1993).

    Article  CAS  Google Scholar 

  10. Meyer, E., Cole, G., Radhakrishnan, R. & Epp, O. Acta Crystallogr. B 44, 26–38 (1988).

    Article  Google Scholar 

  11. Ash, E. L.,. et al. Proc. Natl. Acad. Sci. USA 97, 10371–10376 (2000).

    Article  CAS  Google Scholar 

  12. Bode, W. et al. EMBO J. 8, 3467–3475 (1989).

    Article  CAS  Google Scholar 

  13. Hof, P. et al. EMBO J. 15, 5481–5491 (1996).

    Article  CAS  Google Scholar 

  14. Fujinaga, M., Delbaere, L.T.J., Brayer, G.D. & James, M.N.G. J. Mol. Biol. 184, 479–502 (1985).

    Article  CAS  Google Scholar 

  15. Moult, J., Sussman, F. & James, M.N.G. J. Mol. Biol. 182, 555–566 (1985).

    Article  CAS  Google Scholar 

  16. Edman, K.,. et al. Nature 401, 822–826 (1999).

    Article  CAS  Google Scholar 

  17. Royant, A.,. et al. Nature 406, 645–648 (2000).

    Article  CAS  Google Scholar 

  18. Warshel, A. & Russell, S. J. Am. Chem. Soc. 108, 6569–6579 (1986).

    Article  CAS  Google Scholar 

  19. Takahashi, L.H.,. et al. J. Mol. Biol. 201, 423–428 (1988).

    Article  CAS  Google Scholar 

  20. Takahashi, L.H., Radhakrishnan, R., Rosenfield, R.E. & Meyer, E.F. Biochemistry 28, 7610–7617 (1989).

    Article  CAS  Google Scholar 

  21. Whiting, A.K. & Peticolas, W.L. Biochemistry 33, 552–561 (1994).

    Article  CAS  Google Scholar 

  22. Hammersley, A.P. FIT2D: A highly successful scientific data analysis program of both general and specific application (ESRF, Grenoble, France; 2000).

    Google Scholar 

  23. Bailey, S. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  24. Otwinowski, Z. In Data collection and processing (eds Sawyer, L., Isaacs, N.W. & Bailey, S.) 55–62 (Daresbury Laboratory, Warrington, UK; 1993).

    Google Scholar 

  25. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  26. Brünger, A.T. Nature 355, 472–475 (1992).

    Article  Google Scholar 

  27. Jones, A.T., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  28. Schneider, T.R. Acta Crystallogr. D 56, 714–721 (2000).

    Article  CAS  Google Scholar 

  29. Esnouf, R.M. J. Mol. Graph. 15, 133–138 (1997).

    Google Scholar 

  30. Merritt, E.A. & Murphy, M.E.P. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  Google Scholar 

  31. Guex, N. & Peitsch, M.C. Electrophoresis 18, 2714–2723 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the assistance of W. Burmeister, S. Wakatsuki, R. Wouts and A. Kirrander during data collection. Work was supported by the B.B.S.R.C., E.P.S.R.C., M.R.C., the Swedish Research Council, NFR, the EU BIOTECH programme, AstraZeneca Pharmaceuticals (via a CASE award to P.A.W.) and New College, Oxford (via a Junior Research Fellowship to R.C.W.). We thank ESRF and the EMBL Outstation in Grenoble for beam time and support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher J. Schofield or Janos Hajdu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilmouth, R., Edman, K., Neutze, R. et al. X-ray snapshots of serine protease catalysis reveal a tetrahedral intermediate. Nat Struct Mol Biol 8, 689–694 (2001). https://doi.org/10.1038/90401

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90401

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing