Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of β-lactam synthetase reveals how to synthesize antibiotics instead of asparagine

Abstract

The enzyme β-lactam synthetase (β-LS) catalyzes the formation of the β-lactam ring in clavulanic acid, a clinically important β-lactamase inhibitor. Whereas the penicillin β-lactam ring is generated by isopenicillin N synthase (IPNS) in the presence of ferrous ion and dioxygen, β-LS uses ATP and Mg2+ as cofactors. According to sequence alignments, β-LS is homologous to class B asparagine synthetases (AS-Bs), ATP/Mg2+-dependent enzymes that convert aspartic acid to asparagine. Here we report the first crystal structure of a β-LS. The 1.95 Å resolution structure of Streptomyces clavuligerus β-LS provides a fully resolved view of the active site in which substrate, closely related ATP analog α,β-methyleneadenosine 5′-triphosphate (AMP-CPP) and a single Mg2+ ion are present. A high degree of substrate preorganization is observed. Comparison to Escherichia coli AS-B reveals the evolutionary changes that have taken place in β-LS that impede interdomain reaction, which is essential in AS-B, and that accommodate β-lactam formation. The structural data provide the opportunity to alter the synthetic potential of β-LS, perhaps leading to the creation of new β-lactamase inhibitors and β-lactam antibiotics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reactions catalyzed by β-LS, IPNS and AS-B.
Figure 2: Comparison of β-LS and AS-B.
Figure 3: Structure-based sequence alignment of β-LS and AS-B.
Figure 4: The active site.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Neu, H.C. Science 257, 1064–1073 (1992).

    Article  CAS  Google Scholar 

  2. Levy, S.B. N. Engl. J. Med. 338, 1376–1378 (1998).

    Article  CAS  Google Scholar 

  3. Walsh, C. Nature 406, 775–781 (2000).

    Article  CAS  Google Scholar 

  4. Baggaley, K.H., Brown, A.G. & Schofield, C.J. Nat. Prod. Rep. 14, 303–333 (1997).

    Article  Google Scholar 

  5. Jensen, S.E. & Paradkar, A.S. Antonie van Leeuwenhoek 75, 125–133 (1999).

    Article  CAS  Google Scholar 

  6. Bachmann, B.O., Li, R. & Townsend, C.A. Proc. Natl. Acad. Sci. USA 95, 9082–9086 (1998).

    Article  CAS  Google Scholar 

  7. Bachmann, B.O. & Townsend, C.A. Biochemistry 39, 11187–11193 (2000).

    Article  CAS  Google Scholar 

  8. McNaughton, H.J. et al. Chem. Commun. 21, 2325–2326 (1998).

    Article  Google Scholar 

  9. Roach, P.L. et al. Nature 387, 827–830 (1997).

    Article  CAS  Google Scholar 

  10. Burzlaff, N.I. et al. Nature 401, 721–724 (1999).

    Article  CAS  Google Scholar 

  11. Li, R., Stapon, A., Blanchfield, J.T. & Townsend, C.A. J. Am. Chem. Soc. 122, 9296–9297 (2000).

    Article  CAS  Google Scholar 

  12. McGowan, S.J., Bycroft, B.W. & Salmond, G.P.C. Trends Microbiol. 6, 203–208 (1998).

    Article  CAS  Google Scholar 

  13. Scofield, M.A., Lewis, W.S. & Schuster, S.S. J. Biol. Chem. 265, 12895–12902 (1990).

    CAS  PubMed  Google Scholar 

  14. Richards, N.G.J. & Schuster, S.M. Adv. Enzymol. Relat. Areas Mol. Biol. 72, 145–198 (1998).

    CAS  PubMed  Google Scholar 

  15. Zalkin, H. & Smith, J.L. Adv. Enzymol. Relat. Areas Mol. Biol. 72, 87–143 (1998).

    CAS  PubMed  Google Scholar 

  16. Larsen, T.M. et al. Biochem. 38, 16146–16157 (1999).

    Article  CAS  Google Scholar 

  17. Boehlein, S.K., Richards, N.G.J. & Schuster, S.M. J. Biol. Chem. 269, 7450–7457 (1994).

    CAS  PubMed  Google Scholar 

  18. Jones, S. & Thornton, J.M. Proc. Natl. Acad. Sci. USA 93, 13–20 (1996).

    Article  CAS  Google Scholar 

  19. Kleywegt, G.J. & Jones, T.A. Acta Crystallogr. D 50, 178–185 (1994).

    Article  CAS  Google Scholar 

  20. Altschul, S.F. et al. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  21. Chakrabarti, R. & Schuster, S.M. Int. J. Pediatr. Hematol. Oncol. 4, 597–611 (1997).

    Google Scholar 

  22. Bruice, T.C. & Benkovic, S.J. Biochemistry 39, 6267–6274 (2000).

    Article  CAS  Google Scholar 

  23. Bürgi, H.B. & Dunitz, J.D. Acc. Chem. Res. 16, 153–161 (1983).

    Article  Google Scholar 

  24. Hendrickson, W.A., Horton, J.R. & LeMaster, D.M. EMBO J. 9, 1665–1672 (1990).

    Article  CAS  Google Scholar 

  25. Elson, S.W. et al. J. Chem. Soc. Chem. Commun. 15, 1212–1214 (1993).

    Article  Google Scholar 

  26. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  27. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  28. McRee, D.E. J. Struct. Biol. 125, 156–165 (1999).

    Article  CAS  Google Scholar 

  29. Laskowski, R.A. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  30. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  31. Merritt, E.A. & Bacon, D.J. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  32. Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  33. Esnouf, R.M. J. Mol. Graph. Model. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  34. Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

Download references

Acknowledgements

This work was supported by funds from the David and Lucile Packard Foundation to A.C.R., by an NIH grant to C.A.T. and in part by an NIH training grant to M.T.M. The DND-CAT Synchrotron Research Center at the Advanced Photon Source is supported by the E.I. DuPont de Nemours & Co., The Dow Chemical Company, the NSF and the State of Illinois.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy C. Rosenzweig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, M., Bachmann, B., Townsend, C. et al. Structure of β-lactam synthetase reveals how to synthesize antibiotics instead of asparagine. Nat Struct Mol Biol 8, 684–689 (2001). https://doi.org/10.1038/90394

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90394

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing