Crystal structure of the human ubiquitin conjugating enzyme complex, hMms2–hUbc13

Article metrics

Abstract

The ubiquitin conjugating enzyme complex Mms2–Ubc13 plays a key role in post-replicative DNA repair in yeast and the NF-κB signal transduction pathway in humans. This complex assembles novel polyubiquitin chains onto yet uncharacterized protein targets. Here we report the crystal structure of a complex between hMms2 (Uev1) and hUbc13 at 1.85 Å resolution and a structure of free hMms2 at 1.9 Å resolution. These structures reveal that the hMms2 monomer undergoes a localized conformational change upon interaction with hUbc13. The nature of the interface provides a physical basis for the preference of Mms2 for Ubc13 as a partner over a variety of other structurally similar ubiquitin-conjugating enzymes. The structure of the hMms2–hUbc13 complex provides the conceptual foundation for understanding the mechanism of Lys 63 multiubiquitin chain assembly and for its interactions with the RING finger proteins Rad5 and Traf6.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The overall structure of the hMms2–hUbc13 complex.
Figure 2: The interface created by the hMms2–hUbc13 complex.
Figure 3: Comparison of free and bound forms of hMms2.
Figure 4: Molecular surface of hMms2–hUbc13 heterodimer.

Accession codes

Accessions

Protein Data Bank

References

  1. 1

    Hochstrasser, M. Annu. Rev. Genet. 30, 405–439 (1996).

  2. 2

    Hershko, A. & Ciechanover, A. Annu. Rev. Biochem. 67, 425–479 (1998).

  3. 3

    Scheffner, M., Smith, S. & Jentsch, S. In Ubiquitin and the biology of the cell (eds Peters, J.-M., Harris, J.R. & Finley, D.) 65–91 (Plenum Press, New York; 1998).

  4. 4

    Hofmann, R.M. & Pickart, C.M. Cell 96, 645–653 (1999).

  5. 5

    Ulrich, H.D. & Jentsch, S. EMBO J. 19, 3388–3397 (2000).

  6. 6

    Broomfield, S., Chow, B.L. & Xiao, W. Proc. Natl. Acad. Sci. USA 95, 5678–5683 (1998).

  7. 7

    Deng, L. et al. Cell 103, 351–361 (2000).

  8. 8

    Xiao, W. et al. Mutat. Res. 435, 1–11 (1999).

  9. 9

    Xiao, W., Chow, B.L., Broomfield, S. & Hanna, M. Genetics 155, 1633–1641 (2000).

  10. 10

    Cook, W.J., Jeffrey, L.C., Sullivan, M.L. & Vierstra, R.D. J. Biol. Chem. 267, 15116–15121 (1992).

  11. 11

    Liu, Q. et al. J. Biol. Chem. 274, 16979–16987 (1999).

  12. 12

    Miura, T., Klaus, W., Gsell, B., Miyamoto, C. & Senn, H. J. Mol. Biol. 290, 213–628 (1999).

  13. 13

    Zheng, N., Wang, P., Jeffrey, P.D. & Pavletich, N.P. Cell 102, 533–539 (2000).

  14. 14

    Doublié, S. Methods Enzymol. 276, 523–530 (1997).

  15. 15

    Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

  16. 16

    Hendrickson, W.A. & Ogata, C.M. Methods Enzymol. 276, 494–522 (1997).

  17. 17

    Terwilliger, T.C. Acta Crystallogr. A 43, 1–5 (1987).

  18. 18

    Cowtan, K. In Joint CCP4 and ESF-EACBM newsletter on protein crystallography 31, 24–28 (1994).

  19. 19

    Lamzin, V.S. & Wilson, K.S. Acta Crystallogr. D 49, 129–149 (1993).

  20. 20

    Perrakis, A., Sixma, T.K., Wilson, K.S. & Lamzin, V.S. Acta Crystallogr. D. 53, 448–455 (1997).

  21. 21

    Jones, T.A., Zhou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

  22. 22

    Vaguine, A. A., Richelle, J. & Wodak, J. Acta Crystallogr. D 55, 191–205 (1999).

  23. 23

    Read, R.J. Acta Crystallogr. A 42, 140–149 (1986).

  24. 24

    Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

  25. 25

    Adams, P.D., Pannu, N.S., Read, R.J. & Brünger, A.T. Proc. Natl. Acad. Sci. USA 94, 5018–5023 (1997).

  26. 26

    Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Crystallogr. 26, 283–291 (1993).

  27. 27

    Esnouf, R.M. J. Mol. Graph. Model. 15, 133–138 (1997).

  28. 28

    Nicholls, A., Sharp, K.A. & Honig, B. Struct. Funct. Genet. 11, 281–296 (1991).

  29. 29

    Brünger, A.T. Nature 355, 472–474 (1992).

Download references

Acknowledgements

We wish to thank R. Sweet and the staff of the beamline X12C (NSLS) for technical support during crystallographic data collection. We also thank members of the Ellison and Glover labs for valuable discussions and S. Smith for secretarial services. This work was supported by a research grant from the National Cancer Institute of Canada (M.J.E) and Canadian Institutes of Health Research (J.N.M.G and W.X.). W.X. is a research scientist of the National Cancer Institute of Canada.

Author information

Correspondence to J.N. Mark Glover or Michael J. Ellison.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moraes, T., Edwards, R., McKenna, S. et al. Crystal structure of the human ubiquitin conjugating enzyme complex, hMms2–hUbc13. Nat Struct Mol Biol 8, 669–673 (2001) doi:10.1038/90373

Download citation

Further reading