Structure of a WW domain containing fragment of dystrophin in complex with β-dystroglycan

Abstract

Dystrophin and β-dystroglycan are components of the dystrophin–glycoprotein complex (DGC), a multimolecular assembly that spans the cell membrane and links the actin cytoskeleton to the extracellular basal lamina. Defects in the dystrophin gene are the cause of Duchenne and Becker muscular dystrophies. The C-terminal region of dystrophin binds the cytoplasmic tail of β-dystroglycan, in part through the interaction of its WW domain with a proline-rich motif in the tail of β-dystroglycan. Here we report the crystal structure of this portion of dystrophin in complex with the proline-rich binding site in β-dystroglycan. The structure shows that the dystrophin WW domain is embedded in an adjacent helical region that contains two EF-hand-like domains. The β-dystroglycan peptide binds a composite surface formed by the WW domain and one of these EF-hands. Additionally, the structure reveals striking similarities in the mechanisms of proline recognition employed by WW domains and SH3 domains.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structure of the dystrophin–β-dystroglycan complex.
Figure 2: Aligned sequences of the dystrophin, and dystrophin related proteins utrophin, DRP2, and dystrobrevin-α.
Figure 3: Stereo views showing the binding mode of Pro residues by the WW domain and comparison to that observed in SH3 domains.

Accession codes

Accessions

Protein Data Bank

References

  1. 1

    Koenig, M., Monaco, A.P. & Kunkel, L.M. Cell 53, 219– 226 (1988).

  2. 2

    Straub, V. & Campbell, K.P. Curr. Opin. Neurol. 10, 168–175 (1997).

  3. 3

    Tinsley, J.M., Blake, D.J., Zuellig, R.A. & Davies, K.E. Proc. Natl. Acad. Sci. USA 91, 8307– 8313 (1994).

  4. 4

    Koenig, M. et al. Am. J. Hum. Genet. 45, 498– 506 (1989).

  5. 5

    Roberts, R.G., Bobrow, M. & Bentley, D.R. Proc. Natl. Acad. Sci. USA 89, 2331–2335 (1992).

  6. 6

    Jung, D., Yang, B., Meyer, J., Chamberlain, J.S. & Campbell, K.P. J. Biol. Chem. 270, 27305– 27310 (1995).

  7. 7

    Rentschler, S. et al. Biol. Chem. 380, 431– 442 (1999).

  8. 8

    Sudol, M. Prog. Biophys. Mol. Biol. 65, 113– 132 (1996).

  9. 9

    Kay, B.K., Williamson, M.P. & Sudol, M. FASEB J. 14, 231– 241 (2000).

  10. 10

    Komuro, A., Saeki, M. & Kato, S. J Biol Chem 274, 36513–36519 (1999).

  11. 11

    Chen, H.I. & Sudol, M. Proc. Natl. Acad. Sci. USA 92, 7819–7823 (1995).

  12. 12

    Bedford, M.T., Chan, D.C. & Leder, P. EMBO J. 16, 2376– 2383 (1997).

  13. 13

    Bedford, M.T., Reed, R. & Leder, P. Proc. Natl. Acad. Sci. USA 95, 10602– 10607 (1998).

  14. 14

    Lu, P.J., Zhou, X.Z., Shen, M. & Lu, K.P. Science 283, 1325–1328 (1999).

  15. 15

    Ranganathan, R., Lu, K.P., Hunter, T. & Noel, J.P. Cell 89, 875–886 (1997).

  16. 16

    Macias, M.J. et al. Nature 382, 646–649 (1996).

  17. 17

    Ikura, M. Trends Biochem. Sci. 21, 14–17 (1996).

  18. 18

    de Beer, T., Carter, R.E., Lobel-Rice, K.E., Sorkin, A. & Overduin, M. Science 281, 1357–1360 (1998).

  19. 19

    Meng, W., Sawasdikosol, S., Burakoff, S.J. & Eck, M.J. Nature 398, 84–90 ( 1999).

  20. 20

    Musacchio, A., Saraste, M. & Wilmanns, M. Nature Struct. Biol. 1, 546– 551 (1994).

  21. 21

    Prehoda, K.E., Lee, D.J. & Lim, W.A. Cell 97, 471–480 (1999).

  22. 22

    Fedorov, A.A., Fedorov, E., Gertler, F. & Almo, S.C. Nature Struct. Biol. 6, 661–665 ( 1999).

  23. 23

    Mahoney, N.M., Rozwarski, D.A., Fedorov, E., Fedorov, A.A. & Almo, S.C. Nature Struct. Biol. 6, 666–671 (1999).

  24. 24

    Verdecia, M.A., Bowman, M.E., Lu, K.P., Hunter, T. & Noel, J.P. Nature Struct. Biol. 7, 639– 643 (2000).

  25. 25

    Yang, B. et al. J. Biol. Chem. 270, 11711– 11714 (1995).

  26. 26

    Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 ( 1997).

  27. 27

    Collaborative Computational Project Number4. Acta Crystallogr. D 50, 760–776 (1994).

  28. 28

    Tong, L. & Rossman, M.G. J. Appl. Crystallogr. 26, 15–21 (1993).

  29. 29

    Otwinowski, Z. in Isomorphous replacement and anomalous scattering, Proc. Daresbury Study Weekend, 80–85 (SERC Daresbury Laboratory, Warrington, UK; 1991)

  30. 30

    Jones, T.A. & Kjeldgaard, M. Methods Enzymol. 277, 173–208 (1997).

  31. 31

    Brunger, A. X-PLOR Version 3.0: a system for crystallography and NMR. (Yale University Press, New Haven; 1992).

  32. 32

    Lamzin, V.S. & Wilson, K.S. Methods Enzymol. 277 , 269–305 (1997).

  33. 33

    Nguyen, J.T., Turck, C.W., Cohen, F.E., Zuckermann, R.N. & Lim, W.A. Science 282, 2088– 2092 (1998).

Download references

Acknowledgements

The authors thank C. Dahl for synthesis and purification of the β-dystroglycan peptide and A. Farooq for help with microcalorimetry measurements. We thank M. Macias for coordinates of the Yap WW domain and for helpful discussions in comparing the structures. This work was supported in part by grants from the NIH (to M.S.), the Muscular Dystrophy Association (to M.J.E. and M.S.), and by the US Department of Energy, Office of Biological and Environmental Research (to A.J. and Rg.Z). M.J.E. is a recipient of a Burroughs-Wellcome Career award in the Biomedical Sciences, and a member of the Harvard-Armenise Center for Structural Biology. Diffraction data were recorded at the Advanced Photon Source at Argonne National Labs, and at CHESS, which is supported by grants from the NIH and NSF.

Author information

Correspondence to Michael J. Eck.

Rights and permissions

Reprints and Permissions

About this article

Further reading