Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure-based identification of a novel NTPase from Methanococcus jannaschii

Abstract

Almost half of the entire set of predicted genomic products from Methanococcus jannaschii are classified as functionally unknown hypothetical proteins. We present a structure-based identification of the biochemical function of a protein with an as yet unknown function from a M. jannaschii gene, Mj0226. The crystal structure of Mj0226 protein determined at 2.2 Å resolution reveals that the protein is a homodimer and each monomer folds into an elongated α/β structure of a new fold family. Comparisons of Mj0226 protein with protein structures in the database, however, indicate that one part of the protein is homologous to some of the nucleotide-binding proteins. Biochemical analysis shows that Mj0226 protein is a novel nucleotide triphosphatase that can efficiently hydrolyze nonstandard nucleotides such as XTP to XMP or ITP to IMP, but not the standard nucleotides, in the presence of Mg2+ or Mn2+ ions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, A stereodiagram of the experimental (MIR) electron density map at 3.0 Å resolution.
Figure 2: A diagram showing the dimeric interface of Mj0226.
Figure 3: a, Structure comparison of Mj0226 protein (red) with the C-terminal domains of histidyl- (blue) and glycyl- (cyan) tRNA synthetases.
Figure 4: a, Thin layer chromatography showing the pyrophosphate releasing NTPase activities of Mj0226 with GTP.
Figure 5: Sequence alignment of Mj0226 with other homologous proteins.
Figure 6: a, A |Fo| - |Fc| map showing the AMPPNP.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kerlavage, A.R. TIGR Microbial genome database. http://www.tigr.org/tdb/mdb/mdb.html (1999).

  2. Rost, B. Marrying structure and genomics. Structure 6, 259 –263 (1998).

    Article  CAS  Google Scholar 

  3. Gaasterland, T. http://www.mcs.anl.gov/home/gaasterl/genomes.html ( 1999).

  4. Altschul, S.F. et al, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  5. Kerlavage, A.R. http://www.tigr.org/softlab (1999).

  6. Deckert, G. et al. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392, 353– 358 (1998).

    CAS  Google Scholar 

  7. Klenk, H.P. et al. The complete genome sequence of the hyperthermophilic, sulfite reducing archeon Archaeoglobus fulgidus. Nature 390, 364–370 (1997).

    Article  CAS  Google Scholar 

  8. Fraser, C.M. et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 270, 397– 403 (1995).

    Article  CAS  Google Scholar 

  9. Fleischmann, R.D. et al. Whole genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496– 512 (1995).

    Article  CAS  Google Scholar 

  10. Tomb, J.F. et al. The complete genome sequence of thegastric pathogen Helicobacter pylori. Nature 388, 539– 547 (1997).

    CAS  PubMed  Google Scholar 

  11. Bult, C.J. et al. Complete genome sequence of the methanogenic archeon, Methanococcus janaschii. Science 273, 1058–1073 (1996).

    Article  CAS  Google Scholar 

  12. Cole, S.T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393. 537–544 (1998).

    Article  CAS  Google Scholar 

  13. Kim, S.-H. Shining a light on structural genomics. Nature Struct. Biol. 5, 643–645 (1998).

    Article  CAS  Google Scholar 

  14. Shapiro, L. & Lima, C.D. The Argonne structural genomics workshop: Lamaze class for the birth of new science. Structure 6, 265–267 (1998).

    Article  CAS  Google Scholar 

  15. Sali, A. 100,000 protein structures for the biologist. Nature Struct. Biol. 5, 1029–1032 ( 1998).

    Article  CAS  Google Scholar 

  16. Montelione, G.T. & Anderson, S. Structural genomics: keystone for a human proteome project. Nature Struct. Biol. 6, 11–12 (1999).

    Article  CAS  Google Scholar 

  17. Murzin, A., Brenner, S.E., Hubbard, T. & Chothia, C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995).

    CAS  PubMed  Google Scholar 

  18. Orengo, C.A., Jones, D.T. & Thornton, J.M. CATH––a hierarchic classification of protein domain structures. Nature 372, 631– 634 (1994).

    Article  CAS  Google Scholar 

  19. Gibrat, J.F., Madej, T. & Bryant, S.H. Surprising similarities in structure comparison. Curr. Opin. Struct. Biol. 6, 377–385 (1996).

    Article  CAS  Google Scholar 

  20. Dalal, S., Balasubramanian, S., & Regan, L. Protein alchemy: changing beta-sheet into alpha-helix. Nature Struct. Biol. 4, 548– 552 (1997).

    Article  CAS  Google Scholar 

  21. Zarembinsky, T.I. et al. Structure-based assignment of the biochemical function of a hypothetical protein: a test case of structural genomics. Proc. Natl. Acad. Sci. USA 95, 15189–15193 (1998).

    Article  Google Scholar 

  22. Sander, C. & Schneider, R. Data base of homology derived protein structures and the structural meaning of sequence alignment. Proteins Struct. Funct. Genet. 9, 56– 68 (1991).

    Article  CAS  Google Scholar 

  23. Aberg, A., Yaremchuk, A., Tukalo, M., Rasmussen, B. & Cusack, S. Crystal structure analysis of the activation of histidine by Thermus thermophilus histidyl t-RNA synthetase. Biochemistry, 36, 3084– 3090 (1997).

    Article  CAS  Google Scholar 

  24. Logan, D.T., Mazauric, M.-H, Kern, D. & Moras, D. Crystal structure of glycyl-tRNA synthetase from T. thermophilus. EMBO J. 14, 4156–4167 (1995).

    Article  CAS  Google Scholar 

  25. Usher, K.C. et al. Crystal structures of CheY from Thermatoga maritima do not support conventional explanations for the structural basis of enhanced stability. Protein Sci. 2, 403– 412 (1998).

    Google Scholar 

  26. Teplyakov, A. et al. Crystal structure of bacteriophage T4 deoxynucleotide kinase with its substrates dGMP and ATP. EMBO J. 15, 3487–3491 (1996).

    Article  CAS  Google Scholar 

  27. Lee, J.O., Rieu, P., Arnaout, M.A. & Liddington, R. Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/ CD18). Cell 80, 631–638 ( 1995).

    Article  CAS  Google Scholar 

  28. Louie, G.V. et al. Structure of porphobilinogen deaminase reveals a flexible multidomain polymerase with a single catalytic core. Nature 359, 33–39 (1992).

    Article  CAS  Google Scholar 

  29. Chen, P. et al. Crystal structure of glycinamide ribonucleotide transformylase from Escherichia coli at 3.0 Å resolution. A target enzyme for chemotherapy. J. Mol. Biol. 227, 283– 292 (1992).

    Article  CAS  Google Scholar 

  30. Friedman, A.M., Fischmann, T.O. & Steitz, T.A. Crystal structure of lac repressor core tetramer and its implications for DNA looping. Science 268, 1721–1727 (1995).

    Article  CAS  Google Scholar 

  31. Baikalov, I. et al. Structure of the Escherichia coli response regulator NarL. Biochemistry 35, 11053– 11061 (1996).

    Article  CAS  Google Scholar 

  32. Rao, F. et al. Structure of the oxidized long chain flavodoxin from Anabena 7120 at 2 Å resolution. Protein Sci. 1, 1413–1427 (1992).

    Article  CAS  Google Scholar 

  33. Huang, M.E., Manus, S., Chuat, J.C. & Galibert, N. Analysis of 62 kb DNA sequence of chromosome X reveals 36 open reading frames and a gene cluster with a counterpart on chromosome XI. Yeast 12, 869–875 (1996).

    Article  CAS  Google Scholar 

  34. Noskov, V.N. et al. HAM1, a gene controlling 6-N-hydroxylaminopurine sensitivity and mutagenesis in the yeast Saccharomyces cerevisiae. Yeast. 12. 17–29 ( 1996).

    Article  CAS  Google Scholar 

  35. Pavlov, Y. I. et al .Base analog N6-hydroxyaminopurine mutagensis in Escherichia coli: genetic control and molecular specificity. Mutat. Res . 253, 33–46 ( 1991).

    Article  CAS  Google Scholar 

  36. Kozmin, S. G. et al. Multiple antimutagenesis mechanisms affect mutagenic activity and specificity of the base analogue 6-N-hydroxylaminopurine in bacteria and yeast. Mutat. Res. 402, 41– 50 (1998).

    Article  CAS  Google Scholar 

  37. Klinker, J.F. & Seifert, R. Functionally nonequivalent interactions of guanosine 5´-triphosphate, inosine 5´-triphosphate, and xanthine 5´-triphosphate with the retinol G-protein, transducin, and with Gi-proteins in HL-60 leukemia cell membranes. Biochem. Pharmacol 54, 551 –562 (1997).

    Article  CAS  Google Scholar 

  38. Jancarik, J. & Kim, S.-H. Sparse matrix sampling: a screening method for crystallization of proteins. J. Appl. Crystallogr. 24, 409–411 (1991).

    Article  CAS  Google Scholar 

  39. Collaborative Computational Project Number 4. The CCP4 suite: program for protein crystallography. Acta Crystallogr. D 50, 760–763 ( 1994).

  40. Sack, J.S. CHAIN: a crystallographic modelling program. J. Mol. Graph. 6, 224–225 (1988).

    Article  Google Scholar 

  41. Brünger, A.T. X-PLOR, a system for crystallography and NMR, Version 3.1. (Yale University Press, New Haven, Connecticut; 1992).

    Google Scholar 

  42. Laskowski, R.A., Macarther, M.W., Moss, P.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283– 291 (1993).

    Article  CAS  Google Scholar 

  43. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insight from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to C.A. Caperelli (University of Cincinnati) for providing glycinamide ribonucleotide and 10-formyl-5,8-dideazafolate, and helpful comments on the GAR assay. We also thank B.K. Lee and J.S. Kim for the program SHEBA. This work was supported by funds from the Korea Institute of Science and Technology (KIST 2000 program), Korean Ministry of Science and Technology (Biotech 2000 program), Korean Ministry of Health and Welfare, Office of Biological and Environmental Research, Office of Energy Research, US Department of Energy, and Korean Academy of Science and Technology (a Young Scientist Award to Y.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunje Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, K., Chung, J., Kim, SH. et al. Structure-based identification of a novel NTPase from Methanococcus jannaschii. Nat Struct Mol Biol 6, 691–696 (1999). https://doi.org/10.1038/10745

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10745

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing