Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A protein disulfide oxidoreductase from the archaeon Pyrococcus furiosus contains two thioredoxin fold units

A Correction to this article was published on 01 October 1998

Abstract

Protein disulfide bond formation is a rate limiting step in protein folding and is catalyzed by enzymes belonging to the protein disulfide oxidoreductase superfamily, including protein disulfide isomerase (PDI) in eucarya and DsbA in bacteria. The first high resolution X-ray crystal structure of a protein disulfide oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus reveals structural details that suggest a relation to eukaryotic PDI. The protein consists of two homologous structural units with low sequence identity. Each unit contains a thioredoxin fold with a distinct CXXC active site motif. The accessibilities of both active sites are rather different as are, very likely, their redox properties. The protein shows the ability to catalyze the oxidation of dithiols as well as the reduction of disulfide bridges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Stereo ribbon diagram of pf PDO monomer.
Figure 2: a, Structure-based sequence alignment of pf PDO N- and C-units.
Figure 3: Structure-based sequence alignment of pf PDO N- and C-units with E.coli thioredoxin22 (E.coli_Trx), bacteriophage T4 glutaredoxin23 (T4_Grx), human PDI-a domain24 (Human_PDI_a), and E.coli DsbA7 (E.coli_DsbA).
Figure 4: , The final (2Fo - Fc) electron density maps at the active site regions of a, the N-unit and b, the C-unit.
Figure 5: a, The region of active site groove N.
Figure 6: Fig 6 a, The coordination geometry of the zinc binding site at the dimer interface.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Holmgren, A. Thioredoxin, Ann. Rev. Biochem. 54, 237–271 (1985).

    Article  CAS  Google Scholar 

  2. Wells, W.W., Yang, Y. & Deits, T.L. Thioltransferases. Adv. Enzymol. 66, 149 –201 (1993).

    CAS  PubMed  Google Scholar 

  3. Laurent, T.C., Moore, E.C. & Reichard, P. Enzymatic synthesis of deoxyribonucleotides IV. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. J. Biol. Chem. 239, 3436– 3444 (1964).

    CAS  Google Scholar 

  4. Holmgren, A. Hydrogen donor system for Escherichia coli ribonucleotide-diphosphate reductase dependent upon glutathione. Proc. Natl. Acad. Sci. USA 73, 2275 –2279 (1976).

    CAS  Google Scholar 

  5. Holmgren, A., Söderberg, B.O., Eklund, H. & Brändén, C.I. Three-dimensional structure of E. coli thioredoxin-S2 to 2.8 Å resolution. Proc. Natl. Acad. Sci. USA 72, 2305– 2309 (1975).

    CAS  Google Scholar 

  6. Söderberg, B.O., Sjöberg, B.M., Sonnerstam, U. & Brändén, C.I. Three-dimensional structure of thioredoxin induced by bacteriophage T4. Proc. Natl. Acad. Sci. USA 75, 5827– 5830 (1978).

    Article  Google Scholar 

  7. Martin, J.L., Bardwell, J.C.A. & Kurigan, J. Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature 365, 464 –468 (1993).

    CAS  Google Scholar 

  8. Martin, J.L. Thioredoxin—a fold for all reasons. Structure, 3, 245– 250 (1995).

    Article  CAS  Google Scholar 

  9. Creighton, T.E. Disulfide formation in proteins. Meth. Enz. 107, 305 –329 (1984).

    Article  CAS  Google Scholar 

  10. Bardwell, J.C.A., McGovern, K. & Beckwith, J. Identification of a protein required for disulfide bond formation in vivo. Cell 67, 581–589 (1991).

    CAS  Google Scholar 

  11. Zapun, A., Bardwell, J.C. & Creighton, T.E. The reactive and destablizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo. Biochemistry 32, 5083–5092 ( 1993).

    CAS  Google Scholar 

  12. Wunderlich, M., Jaenicke, R. & Glockshuber, R. The redox properties of protein disulfide isomerase (DsbA) of Escherichia coli result from a tense conformation of its oxidized form. J. Mol. Biol. 233, 559–566 ( 1993).

  13. Zapun, A. & Creighton, T.E. Effects of DsbA on the disulfide folding of bovine pancreatic trypsin inhibitor and α-lactalbumin. Biochemistry 33, 5202–5211 (1994).

    Article  CAS  Google Scholar 

  14. Goldberger, R.F., Epstein, C.J. & Anfinsen, C.B. Acceleration of reactivation of reduced bovine pancreatic ribonuclease by a microsomal system from rat liver. J. Biol. Chem. 238, 628–635 ( 1963).

    CAS  PubMed  Google Scholar 

  15. Freedman, R.B., Hirst, T.R. & Tuite, M.F. Protein disulfide isomerase: building bridges in protein folding. Trends Biochem. Sci. 19, 331– 336 (1994).

    Article  CAS  Google Scholar 

  16. Bardwell, J.C.A. & Beckwith, J. The bonds that tie: catalyzed disulfide bond formation. Cell 74, 769– 771 (1993).

    Article  CAS  Google Scholar 

  17. Lambert, N. & Freedman, R.B. Structural properties of homogeneous protein disulphide-isomerase from bovine liver purified by a rapid high-yielding procedure. Biochem. J. 213, 225– 234 (1983).

    Article  CAS  Google Scholar 

  18. Edman, J.C., Ellis, L., Blacher, R.W., Roth, R.A. & Rutter, W.J. Sequence of protein disulfide isomerase and implications of its relationship to thioredoxin. Nature 319, 267–270 (1985).

    Article  Google Scholar 

  19. Kemmink, J., Darby, N.J., Dijkstra, K., Nilges, M. & Creighton, T.E. The folding catalyst protein disulfide isomerase is constructed of active and inactive thioredoxin modules. Curr. Biol. 7, 239–245 ( 1997).

    Article  CAS  Google Scholar 

  20. McFarlan, S., Terrell, C.A. & Hogenkamp, H.P.C. The purification, characterization, and primary structure of a small redox protein from Methanobacterium thermoautotrophicum, an archaebacterium. J. Biol. Chem. 15, 10561– 10569 (1992).

    Google Scholar 

  21. Ren, B. et al. Crystallization and preliminary X-ray structure analysis of a hyperthermostable thioltransferase from the archaeon Pyrococcus furiosus. J. Struct. Biol, 119, 1–5 (1997).

    CAS  Google Scholar 

  22. Katti, S.K., LeMaster, D.M. & Eklund, H. Crystal structure of thioredoxin from Escherichia coli at 1.68 Å resolution. J. Mol. Biol. 212, 167– 184 (1990).

    CAS  Google Scholar 

  23. Eklund, H. et al. Structure of oxidized bacteriophage T4 glutaredoxin (thioredoxin): refinement of native and mutant proteins. J. Mol. Biol. 228, 596–618 (1992).

    Article  CAS  Google Scholar 

  24. Kemmink, J., Darby, N.J., Dijkstra, K., Nilges, M. & Creighton, T.E. Structure determination of the N-terminal thioredoxin-like domain of protein disulfide isomerase using multidimensional heteronuclear 13C/15N NMR spectroscopy. Biochemistry 35, 7684–7691 (1996).

    Article  CAS  Google Scholar 

  25. Guddat, L.W., Bardwell, J.C.A., Zander, T. & Martin, J. The uncharged surface features surrounding the active site of Escherichia coli DsbA are conserved and are implicated in peptide binding. Prot. Sci. 6 , 1148–1156 (1997).

    Article  CAS  Google Scholar 

  26. Saarinen, M., Gleason, F.K. & Eklund, H. Crystal structure of thioredoxin-2 from Anabaena. Structure 3, 1097–1108 ( 1995).

    Article  CAS  Google Scholar 

  27. Freedman, R.B. Folding helpers and unhelpful folders. Curr. Biol. 4, 933 –935 (1994).

    Article  CAS  Google Scholar 

  28. Holmgren, A. Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Structure 3, 239–243 (1995).

    Article  CAS  Google Scholar 

  29. Freedman, R.B. The formation of protein disulfide bonds. Curr. Opin. Struc. Biol. 5, 85–91 (1995).

    Article  CAS  Google Scholar 

  30. Qin, J., Clore, G.M., Kennedy, W.P., Kuszewski, J. & Gronenborn, A.M. The solution structure of human thioredoxin complexed with its target from Ref-1 reveals peptide chain reversal. Structure 4, 613–620 ( 1996).

    Article  CAS  Google Scholar 

  31. Fiala, G. & Stetter, K.O. Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Arch. Microbiol. 145, 56–61 (1986).

    Article  CAS  Google Scholar 

  32. Guagliardi, A. et al. The purification, cloning, and high level expression of a glutaredoxin-like protein from hyperthermophilic archaeon Pyrococcus furiosus. J. Biol. Chem. 270, 5748–5755 (1995).

    Article  CAS  Google Scholar 

  33. Ruddock, L.W., Hirst, T.R. & Freedman, R.B. PH-dependence of the dithiol-oxidizing activity of DsbA (a periplasmic protein thiol:disulphide oxidoreductase) and protein disulphide-isomerase: studies with a novel simple peptide substrate. Biochem. J. 315, 1001–1005 (1996).

    Article  CAS  Google Scholar 

  34. Darby, N.J., Kemmink, J. & Creighton, T.E. Identifying and characterizing a structural domain of protein disulfide isomerase. Biochemistry 35, 10517 –10528 (1996).

    Article  CAS  Google Scholar 

  35. Noiva, R., Freedman, R.B. & Lennarz, W.J. Peptide binding to protein disulfide isomerase occurs at a site distinct from the active sites. J. Biol. Chem. 268, 10210–19217 (1993).

    Google Scholar 

  36. Bennett, C.F., Balcarek, J.M., Varrichio, A. & Crooke, S.T. Molecular cloning and complete amino-acid sequence of form-I phosphoinositide-specific phospholipase C. Nature 334, 268–270 (1988).

    Article  CAS  Google Scholar 

  37. Van, P.N., Rupp, K., Lampen, A. & Söling, H.-D. CaBP2 is a rat homology of ERp72 with protein disulfide isomerase activity. Eur. J. Biochem. 213, 789–795 ( 1993).

    Article  CAS  Google Scholar 

  38. Chaudhuri, M.M., Tonin, P.N., Lewis, W.H. & Srinivasan, P.R. The gene for a novel protein, a member of the protein disulfide isomerase/Form I phosphoinositide-specific phospholipase C family, is amplified in hydroxyurea-resistant cells. Biochem. J. 281, 645–650 (1992).

    Article  CAS  Google Scholar 

  39. Hutchinson, E.G. & Thornton, J.M. PROMOTIF- A program to identify and analyze structural motifs in proteins. Prot. Sci. 5, 212–220 (1996).

    Article  CAS  Google Scholar 

  40. Weiner, S.J. et al. A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106, 765– 784 (1984).

    Article  CAS  Google Scholar 

  41. Katz, B.A. & Kossiakoff, A. The crystallographically determined structures of atypical strained disulfides engineered into subtilisin. J. Biol. Chem. 261, 15480–15485 (1986).

    CAS  PubMed  Google Scholar 

  42. Darby, N.T. & Creighton, T.E. Functional properties of the individual thioredoxin-like domains of protein disulfide isomerase. Biochemistry, 34, 11725–11735 (1995).

    Article  CAS  Google Scholar 

  43. Vuori, K., Myllylä, R., Pihlajaniemi, T. & Kivirikko, K.I. Expression and site-directed mutagenesis of human protein disulfide isomerase in Escherichia coli. J. Biol. Chem. 267, 7211– 7214 (1992).

    CAS  PubMed  Google Scholar 

  44. Chivers, P.T., Laboissière, M.C.A. & Raines, R.T. The CXXC motif: imperative for the formation of native disulfide bonds in the cell. EMBO J. 15, 2659–2667 (1996).

    Article  CAS  Google Scholar 

  45. Hawkins, H.C., de Nardi, M. & Freedman, R.B. Redox properties and cross-linking of the dithiol/disulphide active sites of mammalian protein disulphide-isomerase. Biochem. J. 275, 341–348 ( 1991).

    Article  CAS  Google Scholar 

  46. Christianson, D.W. Structural biology of zinc. Adv. Protein Chem., 42, 281–355 (1991).

    Article  CAS  Google Scholar 

  47. Jones, S. & Thornton, J.M. Protein–protein interactions: a review of protein dimer structures. Prog. Biophys. Molec. Biol . 63, 31–65 ( 1995).

    Article  CAS  Google Scholar 

  48. Yip, K.S.P. et al. The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure 2, 1147– 1158 (1995).

    Article  Google Scholar 

  49. Kabsch, W. Evaluation of single crystal x-ray diffraction data from a position sensitive detector. J. Appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  50. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Meth. Enz. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  51. Otwinowski, Z. Maximum likelihood refinement of heavy atom parameters. In Isomorphous Replacement and Anomalous Scattering. (eds Wolf, W., Evans, P. R. & Leslie, A. G. W.) 80–86 (Daresbury Laboratory, Daresbury, UK; 1991).

    Google Scholar 

  52. Cowtan, K. An automated procedure for phase improvement by density modification. Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 31, 34– 38 (1994).

    Google Scholar 

  53. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in the model. Acta Crystallogr. A 47, 110 –119 (1991).

    Article  Google Scholar 

  54. Brünger, A.T. XPLOR, version 3.1. A System for X-ray Crystallography and NMR. (Yale University Press, New Haven, Connecticut; 1992).

  55. Brünger, A.T. The free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472– 474 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission project: Extremophiles as Cell Factories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Ladenstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, B., Tibbelin, G., de Pascale, D. et al. A protein disulfide oxidoreductase from the archaeon Pyrococcus furiosus contains two thioredoxin fold units. Nat Struct Mol Biol 5, 602–611 (1998). https://doi.org/10.1038/862

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/862

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing