Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of tyrosine hydroxylase at 2.3 Å and its implications for inherited neurodegenerative diseases

Abstract

Tyrosine hydroxylase (TyrOH) catalyzes the conversion of tyrosine to L-DOPA, the rate-limiting step in the biosynthesis of the catecholamines dopamine, adrenaline, and noradrenaline. TyrOH is highly homologous in terms of both protein sequence and catalytic mechanism to phenylalanine hydroxylase (PheOH) and tryptophan hydroxylase (TrpOH). The crystal structure of the catalytic and tetramerization domains of TyrOH reveals a novel α-helical basket holding the catalytic iron and a 40 Å long anti-parallel coiled coil which forms the core of the tetramer. The catalytic iron is located 10 Å below the enzyme surface in a 17 Å deep active site pocket and is coordinated by the conserved residues His 331, His 336 and Glu 376. The structure provides a rationale for the effect of point mutations in TyrOH that cause L-DOPA responsive parkinsonism and Segawa's syndrome. The location of 112 different point mutations in PheOH that lead to phenylketonuria (PKU) are predicted based on the TyrOH structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mallet, J. The TIPS/TINS lecture — Catecholamines — from gene regulation to neuropsychiatric disorders. Trends Neurosci. 19, 191–196 (1996).

    CAS  PubMed  Google Scholar 

  2. Kaufman, S. Studies on the mechanism of the enzymatic conversion of phenylalanine to tyrosine. J. Biol. Chem. 234, 2677–2682 (1959).

    CAS  PubMed  Google Scholar 

  3. Smyth, C. et al. Further tests for linkage of bipolar affective disorder to the tyrosine hydroxylase gene locus on chromosome 11p15 in a new series of multiplex British affective disorder pedigrees. Amer. J. of Psych. 153, 271–274 (1996).

    CAS  Google Scholar 

  4. Thibaut, F. et al. Association of DNA polymorphism in the first intron of the tyrosine hydroxylase gene with disturbances of the catecholaminergic system in schizophrenia. Schizophrenia Res. 23, 259–264 (1997).

    CAS  Google Scholar 

  5. Ludecke, B. et al. Recessively inherited L-DOPA responsive parkinsonism in infancy caused by a point mutation (L205P) in the tyrosine hydroxylase gene. Hum. Mol. Gen. 7, 1023–1028 (1996).

    Google Scholar 

  6. Ludecke, B., Dworniczak, B., Bartholome, K. A point mutation in the tyrosine hydroxylase gene associated with Segawa's syndrome. Hum. Genet. 95, 123–125 (1995).

    CAS  PubMed  Google Scholar 

  7. Fitzpatrick, P.F. Steady-state kinetic mechanism of rat tyrosine hydroxylase. Biochemistry 30, 3658–3662 (1991).

    CAS  PubMed  Google Scholar 

  8. Fitzpatrick, P.F. Kinetic isotope effects on hydroxylation of ring-deuterated phenylalanines by tyrosine hydroyxlase provide evidence against partitioning of an arene oxide intermediate. J. Am. Chem. Soc. 116, 1133–1134 (1994).

    CAS  Google Scholar 

  9. Hillas, P.J. and Fitzpatrick, P.F. A mechanism for hydroxylation by tyrosine hydroxylase based on partitioning of substituted phenylalanines. Biochemistry 35, 6969–6975 (1996).

    CAS  PubMed  Google Scholar 

  10. Hufton, S.E., Jennings, I.G., Cotton, R.G.H. Structure and function of the aromatic amino acid hydroxylases. Biochem. J. 311, 353–366 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fitzpatrick, P.F. Studies of the rate-limiting step in the tyrosine hydroxylase reaction: alternate substrates, solvent isotope effects, and transition-state analogues. Biochemistry 30, 6386–6391 (1991).

    CAS  PubMed  Google Scholar 

  12. Daubner, S.C., Lohse, D.L., Fitzpatrick, P.F. Expression and characterization of the catalytic and regulatory domains of rat tyrosine hydroxylase. Prot. Sci. 2, 1452–1460 (1993).

    CAS  Google Scholar 

  13. Rost, B. PHD: Predicting one-dimensional protein structure by profile-based neural networks. Meth.Enz. 226, 525–539 (1996).

    Google Scholar 

  14. Dickson, P.W., Jennings, I.G., Cotton, R.G.H. Delineation of the catalytic core of phenylalanine hydroxylase and identification of glutamate 286 as a critical residue for pterin function. J. Bio. Chem. 269, 20369–20375 (1994).

    CAS  Google Scholar 

  15. Vrana, K.E., Walker, S.J., Rucker, P., Liu, X. A carboxyl terminal leucine zipper is required for tyrosine hydroxylase tetramer formation. J. Neurochem. 63, 2014–2020 (1994).

    CAS  PubMed  Google Scholar 

  16. Lohse, D.L., Fitzpatrick, P.F. Identification of the intersubunit binding region in rat tyrosine hydroxylase. Biochem. Biophys. Res. Com. 197, 1543–1548 (1993).

    CAS  PubMed  Google Scholar 

  17. Lupas, A. Coiled coils: new structures and new functions. Trends Biochem. Sci. 21, 375–382 (1996).

    CAS  PubMed  Google Scholar 

  18. Bennett, M.J., Schlunegger, M.P., Eisenberg, D. 3D domain swapping — A mechanism for oligomer assembly. Prot. Sci. 4, 2455–2468 (1995).

    CAS  Google Scholar 

  19. Quinsey, N.S., Lenaghan, C.M., Dickson, P.W. Identification of Gln(313) and Pro(327) as residues critical for substrate inhibition in tyrosine hydroxylase. J. Neurochem. 66, 908–914 (1996).

    CAS  PubMed  Google Scholar 

  20. The FSSP database [ Holm, L., Ouzounis, C., Sander, C., Tuparev, G., Vriend, G. Protein Sci. 1, 1691–1698 (1992); Holm, L. and Sander, C. Nucleic Adds Res. 22, 3600–3609 (1994)] is a compilation of representative 3-D protein structures based on an automated analysis of the Protein Data Bank [ Bernstein, F.C. et al., J. Mol. Biol. 233, 123 (1993)].

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Iwaki, M., Phillips, R.S., Kaufman, S. Proteolytic modification of the amino-terminal and carboxyl-terminal regions of rat hepatic phenylalanine hydroxylase. 261, 2051–2056 (1986).

  22. Ramsey, A.J., Daubner, S.C., Ehrlich, J.I., Fitzpatrick, P.F. Identification of iron ligands in tyrosine hydroxylase by mutagenesis of conserved histidine residues. Prot. Sci. 4, 2082–2086 (1985).

    Google Scholar 

  23. Meyerklaucke, W. et al.. Mossbauer, electron-paramagnetic-resonance and X-ray absorption fine-structure studies of the iron environment in recombinant tyrosine hydroxylase. Eur. J. Biochem. 241, 432–439 (1996).

    CAS  Google Scholar 

  24. Ramsey, A.J., Hillas, P.J., Fitzpatrick, P.F. Characterization of the active site iron in tyrosine hydroxylase — redox states of the iron. J. Bio. Chem. 271, 24395–24400 (1996).

    CAS  Google Scholar 

  25. Han, S., Eltis, L.D., Timmis, K.N., Muchmore, S.W., Bolin, J.T. Crystal structure of the biphenyl-cleaving extradiol dioxygenase from a PCB-degrading pseudomonad. Science 270, 976–980 (1995).

    CAS  PubMed  Google Scholar 

  26. Senda, T. et al. Three-dimensional structures of free form and two substrate complexes of an extradiol ring-cleavage type dioxygenase, the BPHC enzyme from pseudomonas SP strain KKS102. J. Mol. Biol. 255, 735–752 (1996).

    CAS  PubMed  Google Scholar 

  27. Quinsey, N.S., Lenaghan, C.M, Dickson, P.W. Identification of Gln(313) and Pro(327) as residues critical for substrate inhibition. J. Neurochem. 66, 908–914 (1996).

    CAS  PubMed  Google Scholar 

  28. Knappskogg, P.M., Flatmark, T., Mallet, J., Ludecke, B., Bartholome, K. Recessively inherited L-DOPA-responsive dystonia caused by a point mutation (Q381K) in the tyrosine hydroxylase gene. Hum. Mol. Gen. 4, 1209–1212 (1995).

    Google Scholar 

  29. Eisensmith, R.C., Woo, S.L.C. Molecular genetics of PKU: from molecular anthropology to gene therapy. Adv. Genetics 32, 199–271 (1995).

    CAS  Google Scholar 

  30. Hendrickson, W.A., Horton, J.R., LeMaster, D.M. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD) — A vehicle for direct determination of 3-dimensional structure. EMBO J. 9, 1665–1672 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Otwinowski, Z. in Data Collection and Processing (eds L. Sawyer, N. Isaacs, S. Bailey) 56562 (Science and Engineering Research Council, Warrington, UK; 1993).

    Google Scholar 

  32. CCP4: A Suite of Programs for Protein Crystallography (SERC Daresbury Laboratory, Warrington WA44AD, UK, 1979).

  33. McRee, D.E. A visual protein crystallographic software system for X11/Xview J. Mol. Graphics 10, 44 (1992).

    Google Scholar 

  34. Otwinowski, Z. in Proceedings of the CCP4 Study Weekend: Isomorphous Replacement and Anomalous Scattering (eds W. Wolf, P.R. Evans, A.G.W. Leslie) 80886 (SERC Daresbury Laboratory, Warrington, UK; 1991).

    Google Scholar 

  35. Cowtan, K.D. Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints. Acta Crystallogr. D49, 148–157 (1993).

    CAS  Google Scholar 

  36. Jones, T.A., Zou, J.-Y., Cowan, S.W., KKjelgaard, M. Improved methods for the building of protein models in electron density maps and the location of errors in these. Acta Crystallogr. A47, 110–119 (1991).

    CAS  Google Scholar 

  37. Brünger, A.T. X-PLOR v3.8, Yale Univ. Press, New Haven, CT (1996).

    Google Scholar 

  38. Colovos, C., Yeates, T.O. Verification of protein structures — Patterns of nonbonded atomic interactions. Prot. Sci. 2, 1511–1519 (1993).

    CAS  Google Scholar 

  39. Laskowski, R.A., MacArthus, M.W., Moss, D.S., Thornton, J.M. PROCHECK — A program to check the stereochemical quality of protein structures. J. Applied Crystallogr. 26, 283–291 (1993).

    CAS  Google Scholar 

  40. Vriend, G. What If: A molecular modeling and drug design program. J. Mol. Graphics 8, 52–56 (1990).

    CAS  Google Scholar 

  41. Kabsch, W., Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    CAS  PubMed  Google Scholar 

  42. Kraulis, P.J. MOLSCRIPT — A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Google Scholar 

  43. Merritt, E.A., Murphy, M.E.P. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D50, 869–873 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond C. Stevens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodwill, K., Sabatier, C., Marks, C. et al. Crystal structure of tyrosine hydroxylase at 2.3 Å and its implications for inherited neurodegenerative diseases. Nat Struct Mol Biol 4, 578–585 (1997). https://doi.org/10.1038/nsb0797-578

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0797-578

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing