A novel DNA structure induced by the anticancer bisplatinum compound crosslinked to a GpC site in DNA

Article metrics


The bifunctional platinum compound, [{trans-PtCl(NH3)2}2 (H2N(CH2)4NH2)]2+, forms a stable adduct with the self-complementary DNA oligomer CATGCATG, with the two platinum atoms coordinated at the N7 positions of the two symmetrical G4 nucleotides. The NMR-derived structure shows that the DNA octamer forms a novel hairpin structure with the platinated G4 residue adopting a syn conformation and the guanine base in the minor groove. Two such hairpins stack end-over-end and are linked together by the butanediamine tether to form a dumbbell structure. Such unusual structural distortion is different from that of the anticancer drug cisplatin–DNA adduct and may provide clues to explain the distinct biological activities of the two compounds.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Comess, K.M. & Lippard, S.J. Molecular aspects of platinum-DNA interactions. in Molecular Aspects ofAnticancer Drug-DNA Interactions (eds, Neidle, S. & Waring, M.) 134–168 (Macmillan Press, London; 1993).

  2. 2

    Reedijk, J. The relevance of hydrogen bonding in the mechanism of action of platinum antitumor compounds. Inorg. chim. Acta 198-200, 873–881 (1992).

  3. 3

    Pil, P.M. & Lippard, S.J. Specific binding of chromosomal protein HMG 1 to DNA damaged by the anticancer drug cisplatin. Science 256, 234–237 (1992).

  4. 4

    McKeage, M.J. & Kelland, L.R. New platinum drugs. in Molecular Aspects of Anticancer Drug-DNA Interactions, (eds, Neidle, S. & Waring, M.). 169–212 (Macmillan Press, London; 1993).

  5. 5

    Hoeschele, J.D., Kraker, A.J., Qu, Y., VanHouten, B. & Farrell, N. Bis(platinum) complexes, chemistry, antitumor activity and DNA-binding. in Molecular Basis of Specificity in Nucleic Acid-Drug Interactions, (eds, Pullman, B. & Jortner, J.) 301–321 (Kluwer Academic Press, Dordrecht; 1990).

  6. 6

    Farrell, N., Qu, Y., Feng, L. & VanHouten, B. Comparison of chemical reactivity, cytotoxicity, interstrand cross-linking and DNA sequence specificity of bis(platinum) complexes containing monodentate or bidentate coordination spheres with their monomeric analogues. Biochemistry 29, 9522–9531 (1990).

  7. 7

    Zou, Y., VanHouten, B. & Farrell, N. Sequence specificity of DNA–DNA interstrand crosslink by cisplatin and dinuclear platinum complexes. Biochemistry 33, 5404–5410 (1994).

  8. 8

    Johnson, A., Qu, Y., VanHouten, B. & Farrell, N. B->Z DNA conformational changes induced by a family of dinuclear bis(platinum) complexes. Nucleic Acids Res. 20, 1697–1703 (1992).

  9. 9

    Bloemink, M.J., Reedijk, J., Farrell, N., Qu, Y. & Stetsenko, A.I. The dinuclear complex [{trans-PtCl(NH3)2}2{μ-H2N(CH2)6NH2}]Cl2 forms a unique macrochelate intrastrand crosslink with d(GpG) J. chem. Soc., chem. Commun. 1002–1003 (1992).

  10. 10

    Kozelka, J., Fouchet, M.-H. & Chottard, J.-C. H8 chemical shifts in oligonucleotides cross-linked at a GpG sequence by cis-Pt(NH3)22+: a clue to the adduct structure. E. J. Biochem. 205, 895–906 (1992).

  11. 11

    den Hartog, J.H.J., Altona, C., van der Marel, G.A. & Reedijk, J. A 1H and 31P NMR study of cis-Pt(NH3)2 [d(CpGpG)-N7(2),N7(3)]: the influence of a 5′-terminal cytosine, on the structure of the cis-Pt(NH3)2 [d(CpGpG)-N7(2),N7(3)] intrastrand cross-link. E. J. Biochem. 147, 371–379 (1985).

  12. 12

    Robinson, H. & Wang, A.H.-J. A simple spectral-driven procedure for the refinement of DNA structures by NMR spectroscopy. Biochemistry 31, 3524–3533 (1992).

  13. 13

    Brunger, A.T. X-PLOR, version 3.1 (Yale University, New Haven CT; 1992).

  14. 14

    Wang, A.H.-J & Teng, M.-K. Molecular recognition of DNA minor groove binding drugs. in Crystallographic and Modeling Methods in Molecular Design, (eds, Bugg, C.E & Ealick,S.E.) 123–150 (Springer-Verlag, New York; 1990).

  15. 15

    Pieters, J.M.L. et al. Hairpin structures in DNA containing arabinofuranosylcytosine. A combination of nuclear magnetic resonance and molecular dynamics. Biochemistry 29, 788–799 (1990).

  16. 16

    Hilbers, C.W., Heus, H.A., van Dongen, M.J.P. & Wijmenga, S.S. The hairpin elements of nucleic acid structure: DNA and RNA folding. in Nucleic Acids and Molecular Biology, vol. 8 (eds, Eckstein, F. & Lilley, D.M.J.) 123–150 (Springer-Verlag, New York; 1994).

  17. 17

    Davison, A. & Leach, D.R.F. Two-base DNA hairpin-loop structures in vivo. Nucleic Acids Res. 22, 4361–4343 (1994).

  18. 18

    Malfoy, B., Hartmann, B. & Leng, M. The B->Z transition of poly(dG-dC). poly(dG-dC) modified by some platinum derivatives. Nucleic Acids Res. 9, 5659–5669 (1981).

  19. 19

    Ushay, H.M., Santella, R.M., Grunberger, D. & Lippard, S.J. Binding of [(dien)PtCl]Cl to poly(dG-dC). poly(dG-dC) facilitates the B->Z conformational transition. Nucleic Acids Res. 10, 3573–3588 (1982).

  20. 20

    Wang, A.H.-J. et al. Molecular structure of a left-handed double helix DNA fragment at atomic resolution. Nature 282, 680–686 (1979).

  21. 21

    Herman, F. et al. A d(GpG)-platinated decanucleotide duplex is kinked: an extended NMR and molecular mechanics study. E. J. Biochem. 194, 119–133 (1990).

  22. 22

    Yohannes, P.G., Zon, G., Doetsch, P.W. & Marzilli, L.G. DNA hairpin formation in adducts with platinum anticancer drugs: gel electrophoresis provides new information and a caveat. J. Am. chem. Soc. 115, 5105–5110 (1993).

  23. 23

    Iwamoto, M., Mukunda, S.J. & Marzilli, L.G. DNA adduct formation by platinum anticancer drugs.Insight into an unusual GpG intrastrand cross-link in a hairpin-like DNA oligonucleotide using NMR and distance geometry methods. J. Am. chem. Soc. 116, 6238–6244 (1994).

  24. 24

    Coll, M., Sherman, S.E., Gibson, D., Lippard, S.J. & Wang, A.H.-J. . Molecular structure of the complex formed between the anticancer drug cisplatin and d(pGpG): C2221 crystal form. J. biomolec. Struct. Dynam. 8, 315–330 (1990).

  25. 25

    Sherman, S.E., Gibson, D., Wang, A.H.-J. & Lippard, S.J. Crystal and molecular structure of cis-[Pt(NH3)2{d(pGpG)}], the principal adduct formed by cis-diamminedichloroplatinum(II) with DNA. J. Am. chem. Soc. 110, 7368–7381 (1988).

  26. 26

    Admiraal, G., van der Veer, J.L., de Graaff, R.A.G., den Hartog, J.H.J. & Reedijk, J. Intrastrand bis(platinum) chelation of d(CpGpG) to cis-platinum: an X-ray single-crystal structure analysis. J. Am. chem. Soc. 109, 592–594 (1987).

  27. 27

    Cramer, R.E., Dahlstrom, P.L., Seu, M.J.T., Norton, T. & Kashiwagi, M. Crystal and molecular structure of cis-[Pt(NH3)2(Guo)2]Cl3/2(ClO4)1/2.7H2O and anticancer activity of cis-[Pt(NH3)2(Puo)2]Cl2 complexes. Inorg. Chem. 19, 148–54 (1980).

  28. 28

    Lilley, D.M.J. & Clegg, R.M. The structure of branched DNA species. Q. Rev. Biophys. 26, 131–175 (1993).

  29. 29

    Churchill, M.E.A. & Travers, A.A. Harnessing the writhe: a role for DNA chaperones in nucleoprotein-complex formation. Trends biochem. Sci. 19, 185–187 (1994).

  30. 30

    Wu, P.K., Qu, Y., Van Houten, B. & Farrell, N. Chemical reactivity and DNA sequence specificity of formally monofunctional and bifunctional bis(platinum) complexes. J. inorg. Biochem. 54, 207–220 (1994).

  31. 31

    Robinson, H. & Wang, A.H.-J. 5′-CGA sequence is a strong motif for homo base-paired parallel-stranded DNA duplex as revealed by NMR analysis. Proc. natn. Acad. Sci. U.S.A. 90, 5224–5228 (1993).

  32. 32

    Mujeeb, A., Kerwin, S.M., Kenyon, G.L. & James, T.L. Solution structure of a conserved DNA sequence from the HIV-1 genome -Restrained molecular dynamics simulation with distance and torsion angle restraints derived from 2-dimensional NMR spectra. Biochemistry 32, 13419–13431 (1993).

  33. 33

    Chou, S.H., Cheng, J.W., Ferdroff, O. & Reid, B. DNA sequence GCGAATGAGC containing the human centromere core sequence GAAT forms a self-complementary duplex with sheared G.A pairs in solution. J. molec. Biol. 241, 467–479 (1994).

  34. 34

    Nicholls, A., Sharp, K. & Hoing, B. GRASP Manual. (Columbia University, New York, NY, 1992).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading