Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel DNA structure induced by the anticancer bisplatinum compound crosslinked to a GpC site in DNA

Abstract

The bifunctional platinum compound, [{trans-PtCl(NH3)2}2 (H2N(CH2)4NH2)]2+, forms a stable adduct with the self-complementary DNA oligomer CATGCATG, with the two platinum atoms coordinated at the N7 positions of the two symmetrical G4 nucleotides. The NMR-derived structure shows that the DNA octamer forms a novel hairpin structure with the platinated G4 residue adopting a syn conformation and the guanine base in the minor groove. Two such hairpins stack end-over-end and are linked together by the butanediamine tether to form a dumbbell structure. Such unusual structural distortion is different from that of the anticancer drug cisplatin–DNA adduct and may provide clues to explain the distinct biological activities of the two compounds.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Comess, K.M. & Lippard, S.J. Molecular aspects of platinum-DNA interactions. in Molecular Aspects ofAnticancer Drug-DNA Interactions (eds, Neidle, S. & Waring, M.) 134–168 (Macmillan Press, London; 1993).

    Chapter  Google Scholar 

  2. Reedijk, J. The relevance of hydrogen bonding in the mechanism of action of platinum antitumor compounds. Inorg. chim. Acta 198-200, 873–881 (1992).

    Article  CAS  Google Scholar 

  3. Pil, P.M. & Lippard, S.J. Specific binding of chromosomal protein HMG 1 to DNA damaged by the anticancer drug cisplatin. Science 256, 234–237 (1992).

    Article  CAS  Google Scholar 

  4. McKeage, M.J. & Kelland, L.R. New platinum drugs. in Molecular Aspects of Anticancer Drug-DNA Interactions, (eds, Neidle, S. & Waring, M.). 169–212 (Macmillan Press, London; 1993).

    Chapter  Google Scholar 

  5. Hoeschele, J.D., Kraker, A.J., Qu, Y., VanHouten, B. & Farrell, N. Bis(platinum) complexes, chemistry, antitumor activity and DNA-binding. in Molecular Basis of Specificity in Nucleic Acid-Drug Interactions, (eds, Pullman, B. & Jortner, J.) 301–321 (Kluwer Academic Press, Dordrecht; 1990).

    Chapter  Google Scholar 

  6. Farrell, N., Qu, Y., Feng, L. & VanHouten, B. Comparison of chemical reactivity, cytotoxicity, interstrand cross-linking and DNA sequence specificity of bis(platinum) complexes containing monodentate or bidentate coordination spheres with their monomeric analogues. Biochemistry 29, 9522–9531 (1990).

    Article  CAS  Google Scholar 

  7. Zou, Y., VanHouten, B. & Farrell, N. Sequence specificity of DNA–DNA interstrand crosslink by cisplatin and dinuclear platinum complexes. Biochemistry 33, 5404–5410 (1994).

    Article  CAS  Google Scholar 

  8. Johnson, A., Qu, Y., VanHouten, B. & Farrell, N. B->Z DNA conformational changes induced by a family of dinuclear bis(platinum) complexes. Nucleic Acids Res. 20, 1697–1703 (1992).

    Article  CAS  Google Scholar 

  9. Bloemink, M.J., Reedijk, J., Farrell, N., Qu, Y. & Stetsenko, A.I. The dinuclear complex [{trans-PtCl(NH3)2}2{μ-H2N(CH2)6NH2}]Cl2 forms a unique macrochelate intrastrand crosslink with d(GpG) J. chem. Soc., chem. Commun. 1002–1003 (1992).

    Article  CAS  Google Scholar 

  10. Kozelka, J., Fouchet, M.-H. & Chottard, J.-C. H8 chemical shifts in oligonucleotides cross-linked at a GpG sequence by cis-Pt(NH3)22+: a clue to the adduct structure. E. J. Biochem. 205, 895–906 (1992).

    Article  CAS  Google Scholar 

  11. den Hartog, J.H.J., Altona, C., van der Marel, G.A. & Reedijk, J. A 1H and 31P NMR study of cis-Pt(NH3)2 [d(CpGpG)-N7(2),N7(3)]: the influence of a 5′-terminal cytosine, on the structure of the cis-Pt(NH3)2 [d(CpGpG)-N7(2),N7(3)] intrastrand cross-link. E. J. Biochem. 147, 371–379 (1985).

    Article  CAS  Google Scholar 

  12. Robinson, H. & Wang, A.H.-J. A simple spectral-driven procedure for the refinement of DNA structures by NMR spectroscopy. Biochemistry 31, 3524–3533 (1992).

    Article  CAS  Google Scholar 

  13. Brunger, A.T. X-PLOR, version 3.1 (Yale University, New Haven CT; 1992).

    Google Scholar 

  14. Wang, A.H.-J & Teng, M.-K. Molecular recognition of DNA minor groove binding drugs. in Crystallographic and Modeling Methods in Molecular Design, (eds, Bugg, C.E & Ealick,S.E.) 123–150 (Springer-Verlag, New York; 1990).

    Chapter  Google Scholar 

  15. Pieters, J.M.L. et al. Hairpin structures in DNA containing arabinofuranosylcytosine. A combination of nuclear magnetic resonance and molecular dynamics. Biochemistry 29, 788–799 (1990).

    Article  CAS  Google Scholar 

  16. Hilbers, C.W., Heus, H.A., van Dongen, M.J.P. & Wijmenga, S.S. The hairpin elements of nucleic acid structure: DNA and RNA folding. in Nucleic Acids and Molecular Biology, vol. 8 (eds, Eckstein, F. & Lilley, D.M.J.) 123–150 (Springer-Verlag, New York; 1994).

    Google Scholar 

  17. Davison, A. & Leach, D.R.F. Two-base DNA hairpin-loop structures in vivo. Nucleic Acids Res. 22, 4361–4343 (1994).

    Article  CAS  Google Scholar 

  18. Malfoy, B., Hartmann, B. & Leng, M. The B->Z transition of poly(dG-dC). poly(dG-dC) modified by some platinum derivatives. Nucleic Acids Res. 9, 5659–5669 (1981).

    Article  CAS  Google Scholar 

  19. Ushay, H.M., Santella, R.M., Grunberger, D. & Lippard, S.J. Binding of [(dien)PtCl]Cl to poly(dG-dC). poly(dG-dC) facilitates the B->Z conformational transition. Nucleic Acids Res. 10, 3573–3588 (1982).

    Article  CAS  Google Scholar 

  20. Wang, A.H.-J. et al. Molecular structure of a left-handed double helix DNA fragment at atomic resolution. Nature 282, 680–686 (1979).

    Article  CAS  Google Scholar 

  21. Herman, F. et al. A d(GpG)-platinated decanucleotide duplex is kinked: an extended NMR and molecular mechanics study. E. J. Biochem. 194, 119–133 (1990).

    Article  CAS  Google Scholar 

  22. Yohannes, P.G., Zon, G., Doetsch, P.W. & Marzilli, L.G. DNA hairpin formation in adducts with platinum anticancer drugs: gel electrophoresis provides new information and a caveat. J. Am. chem. Soc. 115, 5105–5110 (1993).

    Article  CAS  Google Scholar 

  23. Iwamoto, M., Mukunda, S.J. & Marzilli, L.G. DNA adduct formation by platinum anticancer drugs.Insight into an unusual GpG intrastrand cross-link in a hairpin-like DNA oligonucleotide using NMR and distance geometry methods. J. Am. chem. Soc. 116, 6238–6244 (1994).

    Article  CAS  Google Scholar 

  24. Coll, M., Sherman, S.E., Gibson, D., Lippard, S.J. & Wang, A.H.-J. . Molecular structure of the complex formed between the anticancer drug cisplatin and d(pGpG): C2221 crystal form. J. biomolec. Struct. Dynam. 8, 315–330 (1990).

    Article  CAS  Google Scholar 

  25. Sherman, S.E., Gibson, D., Wang, A.H.-J. & Lippard, S.J. Crystal and molecular structure of cis-[Pt(NH3)2{d(pGpG)}], the principal adduct formed by cis-diamminedichloroplatinum(II) with DNA. J. Am. chem. Soc. 110, 7368–7381 (1988).

    Article  CAS  Google Scholar 

  26. Admiraal, G., van der Veer, J.L., de Graaff, R.A.G., den Hartog, J.H.J. & Reedijk, J. Intrastrand bis(platinum) chelation of d(CpGpG) to cis-platinum: an X-ray single-crystal structure analysis. J. Am. chem. Soc. 109, 592–594 (1987).

    Article  CAS  Google Scholar 

  27. Cramer, R.E., Dahlstrom, P.L., Seu, M.J.T., Norton, T. & Kashiwagi, M. Crystal and molecular structure of cis-[Pt(NH3)2(Guo)2]Cl3/2(ClO4)1/2.7H2O and anticancer activity of cis-[Pt(NH3)2(Puo)2]Cl2 complexes. Inorg. Chem. 19, 148–54 (1980).

    Article  CAS  Google Scholar 

  28. Lilley, D.M.J. & Clegg, R.M. The structure of branched DNA species. Q. Rev. Biophys. 26, 131–175 (1993).

    Article  CAS  Google Scholar 

  29. Churchill, M.E.A. & Travers, A.A. Harnessing the writhe: a role for DNA chaperones in nucleoprotein-complex formation. Trends biochem. Sci. 19, 185–187 (1994).

    Article  Google Scholar 

  30. Wu, P.K., Qu, Y., Van Houten, B. & Farrell, N. Chemical reactivity and DNA sequence specificity of formally monofunctional and bifunctional bis(platinum) complexes. J. inorg. Biochem. 54, 207–220 (1994).

    Article  CAS  Google Scholar 

  31. Robinson, H. & Wang, A.H.-J. 5′-CGA sequence is a strong motif for homo base-paired parallel-stranded DNA duplex as revealed by NMR analysis. Proc. natn. Acad. Sci. U.S.A. 90, 5224–5228 (1993).

    Article  CAS  Google Scholar 

  32. Mujeeb, A., Kerwin, S.M., Kenyon, G.L. & James, T.L. Solution structure of a conserved DNA sequence from the HIV-1 genome -Restrained molecular dynamics simulation with distance and torsion angle restraints derived from 2-dimensional NMR spectra. Biochemistry 32, 13419–13431 (1993).

    Article  CAS  Google Scholar 

  33. Chou, S.H., Cheng, J.W., Ferdroff, O. & Reid, B. DNA sequence GCGAATGAGC containing the human centromere core sequence GAAT forms a self-complementary duplex with sheared G.A pairs in solution. J. molec. Biol. 241, 467–479 (1994).

    Article  CAS  Google Scholar 

  34. Nicholls, A., Sharp, K. & Hoing, B. GRASP Manual. (Columbia University, New York, NY, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, D., van Boom, S., Reedijk, J. et al. A novel DNA structure induced by the anticancer bisplatinum compound crosslinked to a GpC site in DNA. Nat Struct Mol Biol 2, 577–586 (1995). https://doi.org/10.1038/nsb0795-577

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0795-577

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing