Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A common protein fold and similar active site in two distinct families of β-glycanases

Abstract

The structure of Clostridium thermocellum endoglucanase CeIC, a member of the largest cellulase family (family A), has been determined at 2.15 Å resolution. The protein folds into an (α/β)8 barrel, with a deep active-site cleft generated by the insertion of a helical subdomain. The structure of the catalytic core of xylanase XynZ, which belongs to xylanase family F, has been determined at 1.4 Å resolution. In spite of significant differences in substrate specificity and structure (including the absence of the helical subdomain), the general polypeptide folding pattern, architecture of the active site and catalytic mechanism of XynZ and CeIC are similar, suggesting a common evolutionary origin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gilkes, N.R., Henrissat, B., Kilburn, D.G., Miller, R.C., Jr & Warren, R.A.J. Domains in microbial β-1,4-glycanases: Sequence conservation, function, and enzyme families. Microbiol. Rev. 55, 303–315 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Henrissat, B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280, 309–316 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Henrissat, B. & Bairoch, A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293, 781–788 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gebler, J. et al. Stereoselective hydrolysis catalyzed by related β-1,4-glucanases and β-1,4-xylanases. J. biol. Chem. 267, 12559–12561 (1992).

    CAS  PubMed  Google Scholar 

  5. Banner, D.W. et al. Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 Å resolution using amino acid sequence data. Nature 255, 609–614 (1975).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, Q. et al. Glu 280 is the nucleophile in the active site of Clostridium thermocellum CelC, a family A endo-β-1,4-glucanase. J. biol. Chem. 268, 14096–14102 (1993).

    CAS  PubMed  Google Scholar 

  7. Navas, J. & Béguin, P. Site-directed mutagenesis of conserved residues in Clostridium thermocellum endoglucanase CelC. Biochem. biophys. res. Comm. 189, 807–812 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Py, B., Bortoli-German, I., Haiech, J., Chippaux, M. & Barras, F. Cellulase EGZ of Erwinia chrysanthemi: structural organization and importance of His 98 and Glu 133 residues for catalysis. Prot. Engng 4, 325–333 (1991).

    Article  CAS  Google Scholar 

  9. Belaich, A. et al. The catalytic domain of endoglucanase A from Clostridium cellulolyticum - Effects of arginine-79 and histidine-122 mutations on catalysis. J. Bacteriol. 174, 4677–4682 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Davies, G.J. et al. Structure and function of endoglucanase V. Nature 365, 362–364 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Törrönen, A., Harkki, A. & Rouvinen, J. Three-dimensional structure of endo-1,4-β-xylanase II from Trichoderma reesei: Two conformational states in the active site. EMBO J. 13, 2493–2501 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Derewenda, U. et al. Crystal structure, at 2.6 Å resolution, of the Streptomyces lividans xylanase A, a member of the F family of β-1,4-D-glycanases. J. biol. Chem. 269, 20811–20814 (1994).

    CAS  PubMed  Google Scholar 

  13. White, A., Withers, S.G., Gilkes, N.R. & Rose, D.R. Crystal structure of the catalytic domain of the β-1,4-glycanase Cex from Cellulomonas fimi. Biochemistry 33, 12546–12552 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Harris, G.W. et al. Structure of the catalytic core of the family F xylanase from Pseudomonas fluorescens and identification of the xylopentaose-binding sites. Structure 2 1107–1116 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Tull, D., Withers, S.G., Gilkes, N.R., Kilburn, D.G., Warren, R.A.J. & Aebersold, R. Glutamic acid 274 is the nucleophile in the active site of a “retaining” exoglucanase from Cellulomonas fimi. J. biol. Chem. 266, 15621–15625 (1991).

    CAS  PubMed  Google Scholar 

  16. Varghese, J.N., Garrett, T.P.J., Colman, P.M., Chen, L., HøJ, P.B. & Fincher, G.B. Three-dimensional structure of two plant beta-glucan endohydrolases with distinct substrate specificities. Proc. natn. Acad. Sci. U.S.A. 91, 2785–2789 (1994).

    Article  CAS  Google Scholar 

  17. Chen, L., Fincher, G.B. & HøJ, P.B. Evolution of polysaccharide hydrolase substrate specificity. J. biol. Chem. 268, 13318–13326 (1993).

    CAS  PubMed  Google Scholar 

  18. Jenkins, J., Lo Leggio, L., Harris, G. & Pickersgill, R. β-glucosidase, β-galactosidase, family A cellulases, family F xylanases and two barley glycanases form a superfamily of enzymes with 8-fold β/α architecture and with two conserved glutamates near the carboxy-terminal ends of β-strands four and seven. FEBS Let. in the press.

  19. Fierobe, H.-P. et al. Characterization of endoglucanase A from Clostridium cellulolyticum. J. Bacteriol. 173 7956–7962. (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yagüe, E., Béguin, P. & Aubert, J.-P. Nucleotide sequence and deletion analysis of the cellulase-encoding gene celH of Clostridium thermocellum. Gene 89, 61–67 (1990).

    Article  PubMed  Google Scholar 

  21. Gilkes, N.R., Langsford, M.L., Kilburn, D.G., Miller, Jr, R.C. & Warren, R.A.J. Mode of action and substrate specificities of cellulases from cloned bacterial genes. J. biol. Chem. 259, 10455–10459 (1984).

    CAS  PubMed  Google Scholar 

  22. Grépinet, O., Chebrou, M.-C. & Béguin, P. Nucleotide sequence and deletion analysis of the xylanase gene (xynZ) of Clostridium thermocellum. J. Bacteriol. 170, 4582–4588 (1988).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Claeyssens, M. & Henrissat, B. Specificity mapping of cellulolytic enzymes - classification into families of structurally related proteins confirmed by biochemical analysis. Prot. Sci. 1, 1293–1297 (1992).

    Article  CAS  Google Scholar 

  24. Henrissat, B., Callebaut, I., Fabrega, S., Lehn, P., Mornon, J.-P. & Davies, G. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc. natn. Acad. Sci. U.S.A., in the press.

  25. Rouvinen, J., Bergfors, T., Teeri, T., Knowles, J.K.C. & Jones, T.A. Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249, 380–386 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Divne, C. et al. The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265, 524–528 (1994)

    Article  CAS  PubMed  Google Scholar 

  27. Juy, M. et al. Crystal structure of a thermostable bacterial cellulose-degrading enzyme. Nature 357, 89–91 (1992).

    Article  CAS  Google Scholar 

  28. Souchon, H., Spinelli, S., Béguin, P. & Alzari, P.M. Crystallization and preliminary diffraction analysis of the catalytic domain of xylanase Z from Clostridium thermocellum. J. molec. Biol. 235, 1348–1350 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Dominguez, R., Souchon, H. & Alzari, P.M. Characterization of two crystal forms of Clostridium thermocellum endoglucanase CelC. Proteins 19, 158–160 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. CCP4, The SERC (UK) Collaborative Computing Project No. 4: A Suite of Programs for Protein Crystallography (Daresbury, UK; 1979).

  31. Navaza, J. AMoRe: an automated package for molecular replacement. Acta crystallogr. A50, 157–163 (1994).

    Article  CAS  Google Scholar 

  32. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  33. Brünger, A.T., Kuriyan, J. & Karplus, M., R-factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  PubMed  Google Scholar 

  34. Engh, R.A. & Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta crystallogr. A47, 392–400 (1991).

    Article  CAS  Google Scholar 

  35. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  36. Sheldrick, G.M. Phase annealing in SHELX-90: direct methods for larger structures. Acta crystallogr. A46, 467–473 (1990).

    Article  CAS  Google Scholar 

  37. Lamzin, V.S. & Wilson, K.S. Automated refinement of protein models. Acta crystallogr. D49, 129–147 (1993).

    CAS  Google Scholar 

  38. Kabsch, W. A solution for the best rotation to relate two sets of vectors. Acta crystallogr. A32, 922–923 (1976).

    Article  Google Scholar 

  39. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dominguez, R., Souchon, H., Spinelli, S. et al. A common protein fold and similar active site in two distinct families of β-glycanases. Nat Struct Mol Biol 2, 569–576 (1995). https://doi.org/10.1038/nsb0795-569

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0795-569

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing