Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of phenylalanyl-tRNA synthetase from Thermus thermophilus

Abstract

The crystal structure of phenylalanyl-tRNA synthetase from Thermus thermophilus, solved at 2.9 Å resolution, displays (αβ)2 subunit organization. Unexpectedly, both the catalytic α- and the non-catalytic β-subunits comprise the characteristic fold of the class II active-site domains. The αβ heterodimer contains most of the building blocks so far identified in the class II synthetases. The presence of an RNA-binding domain, similiar to that of the U1A spliceosomal protein, in the β-subunit is indicative of structural relationships among different families of RNA-binding proteins. The structure suggests a plausible catalytic mechanism which explains why the primary site of tRIMA aminoacylation is different from that of the other class II enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eriani, G., Delarue, M., Poch, O., Gangloff, J. & Moras, D. Partition of aminoacyl-tRNA synthetases in two classes on the basis of mutually exclusive sets of sequence motifs. Nature 347, 203–206 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Rossmann, M.G., Moras, D. & Olsen, K.W. Chemical and biological evolution of a nucleotide-binding protein. Nature 250, 194–199 (1974).

    Article  CAS  PubMed  Google Scholar 

  3. Cusack, S., Berthet-Colominas, C., Hartlein, M., Nassar, N. & Leberman, R. A second class of synthetase structure revealed by X-ray analysis of E.coli seryl-tRNA synthetase at 2.5 Å. Nature 347, 249–255 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Fraser, T.H. & Rich, A. Amino acids are not initially attached to the same position on tRNA molecules. Proc. natn. Acad. Sci. U.S.A. 72, 3044–3048 (1975).

    Article  CAS  Google Scholar 

  5. Sprinzl, M. & Cramer, F. Site of aminoacylation of tRNAs from E. coli with respect to the 2′- or 3′-hydroxyl group of the terminal adenosine. Proc. natn. Acad. Sci. U.S.A. 72, 3049–3053 (1975).

    Article  CAS  Google Scholar 

  6. Brunie, S., Zelwer, C. & Risler, J.L. Crystallographic study of the interaction of methionyl-tRNA synthetase from E. coli with ATP. J. molec. Biol. 216, 411–424 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Rould, M.A., Perona, J.J., Soll, D. & Steitz, T.A. Crystal structure of glutaminyl-tRNA synthetase-tRNAGlu complex. Science 246, 1135–1142 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Brick, P., Bhat, T.N. & Blow, D.M. Structure of tyrosyl-tRNA synthetase refined at 2.3 Å resolution. J. molec. Biol. 208, 83–98 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Ruff, M. et al. Class II aminoacyl-tRNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNAAsp. Science 252 1682–1689 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Kreutzer, R., Kruft, V., Bobkova, E., Lavrik, O. & Sprinzl, M. Structure of phenylalanyl-tRNA synthetase genes from T. thermophilus and their expression in E. coli. Nucleic Acids Res., 20, 4173–4178 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Khodyreva, S., Moor, N., Ankilova, V. & Lavrik, O. Phenylalanyl-tRNA synthetase from E. coli MRE-600: analysis of the active site distribution on the enzyme subunits by affinity labelling. Bioch. biophys. Acta 830, 206–212 (1985).

    CAS  Google Scholar 

  12. Chernaya, M., Reshetnikova, L., Korolev, S. & Safro, M. Preliminary crystallographic study of the phenylanyl-tRNA synthetase from T. thermophilus HB8. J. molec. Biol. 198, 555–556 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Reshetnikova, L. et al. Three-dimensional structure of phenylanyl-tRNA synthetase from T. thermophilus HB8 at 0.6-nm resolution. Eur. J. Biochem. 208, 411–417 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Richardson, J. The anatomy and taxonomy of protein structure. In: Adv. prot. Chem. 34, 167–339 (1981).

    CAS  Google Scholar 

  15. Jasin, M., Regan, L. & Schimmel, P. Modular arrangement of functional domains along the sequence of an aminoacyl-tRNA synthetase. Nature 306, 441–447 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Belrharli, H. et al. Crystal structures at 2.5 Å resolution of seryl-tRNA synthetase complexed with two analogs of seryl adenylate. Science 263, 1432–1436 (1994).

    Article  Google Scholar 

  17. Cavarelli, J. et al. The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction. EMBO J. 13 327–337 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cavarelli, J., Rees, B., Ruff, M., Thierry, J.-C. & Moras, D. Yeast tRNAAsp recognition by its cognate class II aminoacyl-tRNA synthetase. Nature 362, 181–184 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Biou, V., Yaremchuk, A., Tukalo, M. & Cusack, S. The 2.9 Å crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNASer. Science 263, 1404–1410 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Schultz, S.C., Shields, G.C. & Steitz, T.A. Crystal structure of a CAP-DNA complex: the DNA is bent by 90°. Science 253, 1001–1007 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Hynes, T.R. & Fox, R.O. The crystal structure of staphylococcal nuclease refined at 1.7 Å resolution. Proteins 10, 92–105 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Orengo, C. & Thornton, J. Alpha plus beta folds revisited: some favoured motifs. Structure 1, 105–120 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Koch, C.A., Anderson, D., Moran, M.F., Ellis, C., Pawson, T. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 252, 668–674 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Nagai, K., Outbridge, C., Jessen, T.H., Li, J. & Evans, P.R. Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nature 348, 515–520 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Wittekind, M., Gorlach, M., Friedrichs, M., Dreyfuss, G. & Mueller, L. 1H, 13C and 15N NMR assignments and global folding pattern of the RNA-binding domain of the human hnRNP C proteins. Biochemistry 31, 6254–6265 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Burd, C.G. & Dreyfuss, G. Conserved structures and diversity of functions of RNA-binding proteins. Science 265, 615–621 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Oubridge, C., Ito, N., Evans, P.R., Teo, C.-H. & Nagai, K. Crystal structure at 1.92 Å resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372, 432–438 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Ibba, M., Kast, P. & Hennecke, H. Substrate specificity is determined by amino acid pocket size in E. coli phenylalanyl-tRNA synthetase. Biochemistry, 33, 7107–7112 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Eriani, G., Cavarelli, J., Martin, F., Dirheimer, G., Moras, D. & Gangloff, J. Role of dimerization in yeast aspartyl-tRNA synthetase and importance of class II invariant proline. Proc. natn. Acad. Sci. U.S.A. 90, 10816–10820 (1993).

    Article  CAS  Google Scholar 

  30. Sanny, A., Walter, P., Boulanger, Y., Ebel, J.-P. & Fasiolo, F. Evolution of aminoacyl-tRNA synthetase quaternary structure and activity: Saccharomyces cerevisae mitochondrial phenylalanyl-tRNA synthetase. Proc. natn. Acad. Sci. U.S.A. 88, 8387–8391 (1991).

    Article  Google Scholar 

  31. Delarue, M., Poterszman, A., Nikonov, S., Garber, M., Moras, D. & Thierry, J.C. Crystal structure of a procaryotic aspartyl-tRNA synthetase. EMBO J. 13, 3219–3229 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cusack, S. Sequence, structure and evolutionary relationships between class II aminoacyl-tRNA synthetases: an update. Biochimie 75, 1077–1081 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Webster, T.A., Gibson, B.W., Keng, T., Biemann, K. & Schimmel, P. Primary structures of both subunits of Escherichia coli glycyl-tRNA synthetase. J biol. Chem. 256, 10637–10641 (1983).

    Google Scholar 

  34. Chou, P.Y. & Fasman, G.D. Prediction of the secondary structure of proteins from their amino acid sequence in Adv. Enzymol., 47, 45–148 (1978).

    CAS  PubMed  Google Scholar 

  35. Wilson, K.P., Shewchuk, L.M., Brennan, R.G., Otsuka, A.J. & Matthews, B.W. Escherichia coli biotin holoenzyme synthetase/bio repressor crystal structure delineates the biotin- and DNA-binding domains. Proc. natn. Acad. Sci. U.S.A. 89, 9257–9261 (1992).

    Article  CAS  Google Scholar 

  36. Artymiuk, P.J., Rice, D.W., Poirette, A.R., Willet, P. A tale of two synthetases. Nature struct. Biol. 1, 758–760 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Leslie, A.G.W. . in Joint CCP4 and EFS-EACMB Newsletter on Protein Crystallography No. 26 (Daresbury Laboratory, Warrington UK, 1992).

    Google Scholar 

  38. CCP4: A suite of pro grams for protein crystallography (SERC collaborative computing project No. 4, Daresbury Laboratory, Warrington UK, 1979).

  39. Otwinowski, Z. In: Isomorphous Replacement and Anomalous scattering 80–86 (Daresbury Laboratory, Warrington UK, 1991).

    Google Scholar 

  40. Wang, B.-C. Resolution of phase ambiguity in macromolecular crystallography. Meths. Enzymol. 115, 90–112 (1985).

    Article  CAS  Google Scholar 

  41. Leslie, A.G.W. A reciprocal-space method for calculating a molecular envelope using the algorithm of B.C. Wang. Acta crystallogr. A 43, 134–135 (1987).

    Article  Google Scholar 

  42. Rould, M.A., Perona, J.J. & Steitz, T.A. Improving multiple isomorphous replacement phasing by heavy-atom refinement using solvent-flattened phases. Acta crystallogr. A 48, 751–756 (1992).

    Article  Google Scholar 

  43. Cura, V., Krishnaswamy, S. & Podjarny, A.D. Heavy-atom refinement against solvent-flattened phases. Acta crystallogr. A 48, 756–764 (1992).

    Article  Google Scholar 

  44. Zhang, K.Y.J. & Main, P. The use of Sayre's equation with solvent flattening and histogram matching for phase extenuation and refinement of protein structures. Acta crystallogr. A 46, 377–381 (1990).

    Article  Google Scholar 

  45. Mosyak, L. & Safro, M. Phenylalanyl-tRNA synthetase from T. thermophilus has four antiparallel folds of which only two are catalytically active. Biochimie 75, 1091–1098 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Jones, T.A. A graphics model building and refinement system for macromolecules. J appl. crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  47. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these maps. Acta crystallogr. A 47. 110–119 (1991).

    Article  Google Scholar 

  48. Read, R.J., Fourier coefficients for maps using phases from partial structures with errors. Acta crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  49. Brünger, A.T., Kuriyan, J. & Karplus, M., Crystallographic, R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  PubMed  Google Scholar 

  50. Brünger, A.T. X-PLOR Version 3.1 Manual (Yale Univ., New Haven, 1993).

    Google Scholar 

  51. Hodel, A., Kim, S.-H. & Brünger, A.T. Model bias in macromolecular crystal structures. Acta crystallogr. A 48, 851–858 (1992).

    Article  Google Scholar 

  52. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. appl. crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  53. Brünger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 335, 472–475 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosyak, L., Reshetnikova, L., Goldgur, Y. et al. Structure of phenylalanyl-tRNA synthetase from Thermus thermophilus. Nat Struct Mol Biol 2, 537–547 (1995). https://doi.org/10.1038/nsb0795-537

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0795-537

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing