Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The chaperonin GroEL does not recognize apo-α-lactalbumin in the molten globule state

Abstract

We investigate here the interaction between GroEL and two kinds of non-native α-lactalbumin. α-Lactalbumin is a Ca2+-binding protein which assumes a molten globule state in the absence of Ca2+ (apo-α-lactalbumin) at neutral pH. Our results, obtained by molecular-sieve chromatography and hydrogen-exchange measurements, show that apo-α-lactalbumin in this molten globule state is not bound to GroEL either in the absence or in the presence of KCl. On the other hand, we show by molecular-sieve chromatography that α-lactalbumin, in which the four disulphide bonds are fully reduced, is bound to GroEL when 50 mM KCl is present. The results demonstrate that the protein state recognized by GroEL is more unfolded and expanded than the typical molten globule state of α-lactalbumin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Anfinsen, C.B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    CAS  Google Scholar 

  2. Jaenicke, R. Protein folding: local structures, domains, subunits, and assemblies. Biochemistry 30, 3147–3161 (1991).

    Article  CAS  Google Scholar 

  3. Ellis, R.J. Molecular chaperones. A. Rev. Biochem. 60, 321–347 (1991).

    Article  CAS  Google Scholar 

  4. Gething, M.-J. & Sambrook, J. Protein folding in the cell. Nature 355, 33–45 (1992).

    Article  CAS  Google Scholar 

  5. Lorimer, G.H., Todd, M.J. & Viitanen, P.V. Chaperoninsand protein folding: unity and disunity of mechanisms. Phil. Trans. R. Soc. Lond. 339, 297–304 (1993).

    Article  CAS  Google Scholar 

  6. Laminet, A.A., Ziegelhoffer, I., Georgopoulos, C. & Plückthun, A. The Escherichia coli heat shock proteins GroEL and GroES modulate the folding of the β-lactamase precursor. EMBO J. 9, 2315–2319 (1990).

    Article  CAS  Google Scholar 

  7. Martin, J. et al. Chaperonin-mediated protein folding at the surface of GroEL through a ‘molten globule’-like intermediate. Nature 352, 36–42 (1991).

    Article  CAS  Google Scholar 

  8. Kubo, T., Mizobata, T. & Kawata, Y. Refolding of yeast enolase in the presence of the chaperonin GroE. J. biol. Chem. 268, 19346–19351 (1993).

    CAS  PubMed  Google Scholar 

  9. Kuwajima, K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins 6, 87–103 (1989).

    Article  CAS  Google Scholar 

  10. Hiraoka, Y., Segawa, T., Kuwajima, K., Sugai, S. & Murai, N. a-Lactalbumin: a calcium metalloprotein. Biochem. biophys. Res. Commun. 95, 1098–1104 (1980).

    Article  CAS  Google Scholar 

  11. Yutani, K., Ogasahara, K. & Kuwajima, K. Absence of the thermal transition in apo-α-lactalbumin in the molten globule state—a study by differential scanning microcalorimetry. J. molec. Biol. 228, 347–350 (1992).

    Article  CAS  Google Scholar 

  12. Hill, R.L. & Brew, K. Lactose synthetase. Adv. Enzym. 43, 411–490 (1975).

    CAS  Google Scholar 

  13. Hiraoka, Y. & Sugai, S. Equilibrium and kinetic study of sodium-and potassium-induced conformational changes of apo-α-lactalbumin. Int. J. Peptide Protein Res. 26, 252–261 (1985).

    Article  CAS  Google Scholar 

  14. Sommers, P.B. & Kronman, M.J. Comparative fluorescence properties of bovine, goat, human, and guinea pig α-lactalbumin. Biophys. Chem. 11, 217–232 (1980).

    Article  CAS  Google Scholar 

  15. Hemmingsen, S.M. et al. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333, 330–334 (1988).

    Article  CAS  Google Scholar 

  16. Todd, M.J., Viitanen, P.V. & Lorimer, G.H. Hydrolysis of adenosine 5′-triphosphate by Escherichia coli GroEL: effects of GroES and potassium ion. Biochemistry 32, 8560–8567 (1993).

    Article  CAS  Google Scholar 

  17. Viitanen, P.V. et al. Chaperonin-facilitated refolding of ribulosebisphosphate carboxylase and ATP hydrolysis by Chaperonin 60 (groEL) are K+ dependent. Biochemistry 29, 5665–5671 (1990).

    Article  CAS  Google Scholar 

  18. Gray, T.E. & Fersht, A.R. Refolding of barnase in the presence of GroE. J. molec. Biol. 232, 1197–1207 (1993).

    Article  CAS  Google Scholar 

  19. Badcoe, I.G. et al. Binding of a chaperonin to the folding intermediates of lactate dehydrogenase. Biochemistry 30, 9195–9200 (1991).

    Article  CAS  Google Scholar 

  20. Goloubinoff, P., Christeller, J.T., Gatenby, A.A. & Lorimer, G.H. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin Proteins and Mg-ATP. Nature 342, 884–889 (1989).

    Article  CAS  Google Scholar 

  21. van der Vies, S.M., Viitanen, P.V., Gatenby, A.A., Lorimer, G.H. & Jaenicke, R. Conformational states of ribulosebisphosphate carboxylase and their interaction with chaperonin 60. Biochemistry 31, 3635–3644 (1992).

    Article  CAS  Google Scholar 

  22. Mendoza, J.A., Rogers, E., Lorimer, G.H. & Horowitz, P.M. Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese. J. biol. Chem. 266, 13044–13049 (1991).

    CAS  Google Scholar 

  23. Buchner, J. et al. GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30, 1586–1591 (1991).

    Article  CAS  Google Scholar 

  24. Zhi, W., Landry, S.J., Gierasch, L.M. & Srere, P.A. Renaturation of citrate synthase: influence of denaturant and folding assistants. Prot. Sci. 1, 522–529 (1992).

    Article  CAS  Google Scholar 

  25. Viitanen, P.V., Donaldson, G.K., Lorimer, G.H., Lubben, T.H. & Gatenby, A.A. Complex interaction between the chaperonin 60 molecular chaperone and dihydrofolate reductase. Biochemistry 30, 9716–9723 (1991).

    Article  CAS  Google Scholar 

  26. Zheng, X., Rosenberg, L.E., Kalousek, F. & Fenton, W.A. GroEL, GroES, and ATP-dependent folding and spontaneous assembly of ornithine transcarbamylase. J. biol. Chem. 268, 7489–7493 (1993).

    CAS  PubMed  Google Scholar 

  27. Brunschier, R., Danner, M. & Seckler, R. Interaction of phage P22 tailspike protein with GroE molecular chaperones during refolding in vitro. J. biol. Chem. 268, 2767–2772 (1993).

    CAS  PubMed  Google Scholar 

  28. Fisher, M.T. Promotion of the in vitro renaturation of dodecameric glutamine synthetase from Escherichia coli in the presence of GroEL (chaperonin-60) and ATP. Biochemistry 31, 3955–3963 (1992).

    Article  CAS  Google Scholar 

  29. Kumar, A.A., Blankenship, D.T., Kaufman, B.T., Freisheim, J.H. Primary structure of chicken liver dihydrofolate reductase. Biochemistry 19, 667–678 (1980).

    Article  CAS  Google Scholar 

  30. Ito, K. & Akiyama, Y. In vivo analysis of integration of membrane protein in Escherichia coli. Molec. Microbiol. 5, 2243–2253 (1991).

    Article  CAS  Google Scholar 

  31. Hendrix, R.W. Purification and properties of groE, a host protein involved in bacteriophage assembly. J. molec. Biol. 129, 375–392 (1979).

    Article  CAS  Google Scholar 

  32. Price, N.C., Kelly, S.M., Wood, S. & auf der Mauer, A. The aromatic amino acid content of the bacterial chaperone protein groEL (cpn60)—Evidence for the presence of a single tryptophan. FEBS Lett. 292, 9–12 (1991).

    Article  CAS  Google Scholar 

  33. Brew, K., Vanaman, T.C. & Hill, R.L. The role of α-lactalbumin and A protein in lactose synthetase: a unique mechanism for the control of a biological reaction. Proc. natn. Acad. Sci. U.S.A. 59, 491–497 (1968).

    Article  CAS  Google Scholar 

  34. Jentoft, N. & Dearborn, D.G. Labeling of proteins by reductive methylation using sodium cyanoborohydride. J. biol. Chem. 254, 4359–4365 (1979).

    CAS  PubMed  Google Scholar 

  35. Schreier, A.A. A simple filtration assay for measuring hydrogen exchange kinetics of proteins: application to peptide and ligand binding reactions. Analyt. Biochem. 83, 178–184 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okazaki, A., Ikura, T., Nikaido, K. et al. The chaperonin GroEL does not recognize apo-α-lactalbumin in the molten globule state. Nat Struct Mol Biol 1, 439–446 (1994). https://doi.org/10.1038/nsb0794-439

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0794-439

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing