Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis for substrate specificities of cellular deoxyribonucleoside kinases

An Erratum to this article was published on 01 September 2001

Abstract

Deoxyribonucleoside kinases phosphorylate deoxyribonucleosides and activate a number of medically important nucleoside analogs. Here we report the structure of the Drosophila deoxyribonucleoside kinase with deoxycytidine bound at the nucleoside binding site and that of the human deoxyguanosine kinase with ATP at the nucleoside substrate binding site. Compared to the human kinase, the Drosophila kinase has a wider substrate cleft, which may be responsible for the broad substrate specificity of this enzyme. The human deoxyguanosine kinase is highly specific for purine substrates; this is apparently due to the presence of Arg 118, which provides favorable hydrogen bonding interactions with the substrate. The two new structures provide an explanation for the substrate specificity of cellular deoxyribonucleoside kinases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of dNK and dGK.
Figure 2: Initial electron density maps of dNK and dGK.
Figure 3: Nucleoside/nucleotide binding to dNK and dGK.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Thelander, L. & Reichard, P. Annu. Rev. Biochem. 48, 133–158 (1979).

    Article  CAS  Google Scholar 

  2. Arnér, E.S.J. & Eriksson, S. Pharmacol. Ther. 67, 155–186 (1995).

    Article  Google Scholar 

  3. Munch-Petersen, B., Piskur, J. & Sondergaard, L. J. Biol. Chem. 273, 3926–3931. (1998)

    Article  CAS  Google Scholar 

  4. Munch-Petersen, B., Knecht, W., Lenz, C., Sondergaard, L. & Piskur, J. J. Biol. Chem. 275, 6673–6679 (2000).

    Article  CAS  Google Scholar 

  5. Leoni, L.M. et al. Proc. Natl. Acad. Sci. USA 95, 9567–9571 (1998).

    Article  CAS  Google Scholar 

  6. Niranjan, A. et al. Mol. Ther. 2, 114–120 (2000).

    Article  CAS  Google Scholar 

  7. Ugur Ural, A. et al. Gynecol. Oncol. 76, 305–310 (2000).

    Article  CAS  Google Scholar 

  8. Bennett, M.S. et al. FEBS Lett. 443, 121–125 (1999).

    Article  CAS  Google Scholar 

  9. Brown, D.G. et al. Nature Struct. Biol. 2, 876–881 (1995).

    Article  CAS  Google Scholar 

  10. Champness, J.N. et al. Proteins 32, 350–361 (1998).

    Article  CAS  Google Scholar 

  11. Wild, K., Bohner, T., Folkers, G. & Schulz, G.E. Protein Sci. 6, 2097–2106 (1997).

    Article  CAS  Google Scholar 

  12. Arpaia, E. et al. J. Exp. Med. 191, 2197–2207 (2000).

    Article  CAS  Google Scholar 

  13. Hendrickson, W.A. & Ogata, C.M. Methods Enzymol. 276, 494–523. (1997).

    Article  CAS  Google Scholar 

  14. Lavie, A. et al. Nature Struct. Biol. 4, 601–604 (1997).

    Article  CAS  Google Scholar 

  15. Ostermann, N. et al. Structure Fold. Des. 8, 629–642 (2000).

    Article  CAS  Google Scholar 

  16. Herrström Sjöberg, A., Wang L. & Eriksson, S. Mol. Pharmacol. 53, 270–273 (1998).

    Article  Google Scholar 

  17. Branden, C. & Tooze, J. Introduction to protein structure (Garland Publishing, Inc., New York; 1999).

    Google Scholar 

  18. Knecht, W., Munch-Petersen, B. & Piskur, J. J. Mol. Biol. 301, 827–837 (2000).

    Article  CAS  Google Scholar 

  19. Wang, L., Hellman, U. & Eriksson, S. FEBS Lett. 390, 39–43 (1996).

    Article  CAS  Google Scholar 

  20. Otwinowski, Z. in Proceedings of the CCP4 study weekend (eds, Issacs N., Bailey, S. & Sawyer, L.) 56–62 (Daresburry Laboratories, Warrington, UK; 1993).

    Google Scholar 

  21. Terwilliger, T. http://www.solve.lanl.gov (2000).

  22. de La Fortelle, E. & Bricogne, G. Methods Enzymol. 276, 442–494 (1997).

    Google Scholar 

  23. Abrahams, J. & Leslie, A. Acta Crystallogr. D 52, 30–42 (1996).

    Article  CAS  Google Scholar 

  24. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  25. Brünger, A.T., et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  26. Navaza, J. Acta. Crystallogr. D 50, 157–163 (1994).

    Article  Google Scholar 

  27. Cowtan, K. Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 31, 34–38 (1994).

  28. CCP4. The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  29. Kraulis, P. J. Appl. Cryst. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank A.-E. Egholm for excellent technical assistance. This work was supported by grants from the Swedish Natural Science Research Council, the Swedish Strategic Research Foundation (to H.E and S.E.), the Swedish Cancer Foundation (to H.E.), the Danish Research Council (to J.P.) and the Swedish Medical Research Council (to S.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Eklund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, K., Ramaswamy, S., Ljungcrantz, C. et al. Structural basis for substrate specificities of cellular deoxyribonucleoside kinases. Nat Struct Mol Biol 8, 616–620 (2001). https://doi.org/10.1038/89661

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89661

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing