Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement

Abstract

Survivin is a 16.5 kDa protein that is expressed during the G2/M phase of the cell cycle and is hypothesized to inhibit a default apoptotic cascade initiated in mitosis. This inhibitory function is coupled to survivin's localization to the mitotic spindle. To begin to address the structural basis of survivin's function, we report the X-ray crystal structure of a recombinant form of full length survivin to 2.58 Å resolution. Survivin consists of two defined domains including an N-terminal Zn2+-binding BIR domain linked to a 65 Å amphipathic C-terminal α-helix. The crystal structure reveals an extensive dimerization interface along a hydrophobic surface on the BIR domain of each survivin monomer. A basic patch acting as a sulfate/phosphate-binding module, an acidic cluster projecting off the BIR domain, and a solvent-accessible hydrophobic surface residing on the C-terminal amphipathic helix, are suggestive of functional protein–protein interaction surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural features of human survivin.
Figure 2: Overall architecture of human survivin.
Figure 3: Surface features of human survivin.
Figure 4: Dimerization interfaces.
Figure 5: Sequence alignment of eight representative BIR domain containing proteins.
Figure 6: Hydrodynamic characterization of survivin.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Li, F., et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396, 580–583 ( 1998).

    Article  CAS  Google Scholar 

  2. Tamm, I., et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res. 58, 5315–5320 ( 1998).

    CAS  PubMed  Google Scholar 

  3. Liston, P., et al. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379, 349– 353 (1996).

    Article  CAS  Google Scholar 

  4. Uren, A. G., Pakusch, M., Hawkins, C.J., Puls, K.L. & Vaux, D.L. Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor-associated factors. Proc. Natl. Acad. Sci USA 93, 4974–4978 (1996).

    Article  CAS  Google Scholar 

  5. Deveraux, Q. L. & Reed, J.C. IAP family proteins-suppressors of apoptosis. Genes Dev. 13, 239– 252 (1999).

    Article  CAS  Google Scholar 

  6. Ambrosini, G., Adida, C. & Altieri, D. C., A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature Med. 3, 917– 921 (1997).

    Article  CAS  Google Scholar 

  7. Li, F., et al. Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nature Cell Bio. 1, 461– 466 (1999).

    Article  CAS  Google Scholar 

  8. Tanaka, K., et al. Expression of survivin and its relationship to loss of apoptosis in breast carcinomas. Clin. Cancer Res. 6, 127– 134 (2000).

    CAS  PubMed  Google Scholar 

  9. Monzo, M., et al. A Novel Anti-Apoptosis Gene: Re-expression of Survivin Messenger RNA as a Prognosis Marker in Non-Small-Cell Lung Cancers. J. Clinic Oncology 7, 2100 (1999).

    Article  Google Scholar 

  10. Kawasaki, H., et al. Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer. Cancer Res. 58, 5071– 5074 (1998).

    CAS  PubMed  Google Scholar 

  11. Lu, C., Altieri, D. C. & Tanigawa, N. Expression of a novel antiapoptosis gene, survivin, correlated with tumor cell apoptosis and p53 accumulation in gastric carcinomas. Cancer Res. 58, 1808–1812 ( 1998).

    CAS  PubMed  Google Scholar 

  12. Jäätelä, M. Escaping Cell Death: Survival Proteins in Cancer. Exp. Cell Res. 248, 30–43 ( 1999).

    Article  Google Scholar 

  13. Sun, C., et al. NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 401, 818–822 ( 1999).

    Article  CAS  Google Scholar 

  14. Hinds, M.G., Norton, R.S., Vaux, D.L. & Day, C.L. Solution structure of a baculoviral inhibitor of apoptosis (IAP) repeat. Nature Struct. Biol. 6, 648–651 ( 1999).

    Article  CAS  Google Scholar 

  15. Hozak, R.R., Manji, G.A. & Friesen, P.D. The BIR motifs mediate dominant interference and oligomerization of inhibitor of apoptosis Op-IAP. Mol. Cell. Biol. 20, 1877–1885 (2000).

    Article  CAS  Google Scholar 

  16. Fraser, A. G., James, C., Evan, G.I. & Hengartner, M.O. Caenorhabditis elegans inhibitor of apoptosis protein (IAP) homologue BIR-1 plays a conserved role in cytokinesis. Current Biol. 9, 292 –301 (1999).

    Article  CAS  Google Scholar 

  17. Uren, A.G., et al. Role for yeast inhibitor of apoptosis (IAP)-like proteins in cell division . Proc. Natl. Acad. Sci. USA 96, 10170– 10175 (1999).

    Article  CAS  Google Scholar 

  18. Xu, X., et al. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell 3, 389–395 (1999).

    Article  CAS  Google Scholar 

  19. Roy, N., Deveraux, Q.L., Takahashi, R., Salvesen, G.S. & Reed, J. C. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J. 16, 6914– 6925 (1997).

    Article  CAS  Google Scholar 

  20. Suzuki, A., et al. Survivin initiates procaspase 3/p21 complex formation as a result of interaction with Cdk4 to resist Fas-mediated cell death. Oncogene 19, 1346–1353 (2000).

    Article  CAS  Google Scholar 

  21. Jez, J. M., Ferrer, J-L., Bowman, M. E., Dixon, R. A. & Noel, J. P. Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. Biochemistry 39, 890– 902 (2000).

    Article  CAS  Google Scholar 

  22. Johnson, M. L., Correia, J. J., Yphantis, D.A. & Halvorson, H.R. Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. Biophys. J. 36, 575– 588 (1981).

    Article  CAS  Google Scholar 

  23. Philo, J.S. An improved function for fitting sedimentation velocity data for low-molecular weight solutes. Biophys. J. 72, 435– 444 (1997).

    Article  CAS  Google Scholar 

  24. Stafford, W.D. Boundary analysis in sedimentation transport experiments: a procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile. Anal. Biochem. 203, 295– 301 (1992).

    Article  CAS  Google Scholar 

  25. Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276 , 307–326 (1997).

    Article  CAS  Google Scholar 

  26. Collaborative Computational Project, Number 4. CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  27. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849– 861 (1999).

    Article  CAS  Google Scholar 

  28. McRee, D. E. A visual protein crystallographic software system for X11/Xview. J. Mol. Graph. 10, 44–46 ( 1992).

    Article  Google Scholar 

  29. de La Fortelle, E. & Bricogne, G. Maximum likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anamolous diffraction methods. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  30. Abrahams, J. P. & Leslie, A. G. W. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30–42 ( 1996).

    Article  CAS  Google Scholar 

  31. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. D 49, 148–157 (1993).

    Google Scholar 

  32. Cowtan, K. D. & Main, P. Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints . Acta Crystallogr. D 54, 487– 493 (1993).

    Article  Google Scholar 

  33. Brunger, A. T. et al. Crystallography and NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905 –921 (1998).

    Article  CAS  Google Scholar 

  34. Laskowski, R. A., MacArthur. M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures . J. Appl. Crystallogr. 26, 283– 291 (1993).

    Article  CAS  Google Scholar 

  35. Mittl, P. R. E. et al. Structure of recombinant human CPP32 in complex with the tetrapeptideacetyl-Asp-Val-Ala-Asp fluoromethyl ketone. J. Biol. Chem. 272, 6539–6547 (1997).

    Article  CAS  Google Scholar 

  36. Nicholls, A., Charp, K. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Protein Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  37. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures . J. Appl. Crystallogr. 24, 946– 950 (1991).

    Article  Google Scholar 

  38. Amundsen, S. et al. X-POV-Team POV-Ray: persistence of vision ray-tracer. http://www.povray.org. (1997).

  39. Jones, G., Jones, D., Zhou, L., Steller, H. & Chu, Y. Deterin, a new inhibitor of apoptosis from Drosophila melanogaster. J. Biol. Chem. Apr 11 [epub ahead of print] (2000).

Download references

Acknowledgements

We thank J. Greenwald for assistance performing light scattering experiments. We also thank W. Jiang for providing a HeLa cell cDNA library. The SSRL Biotechnology Program is supported by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program, and by the Department of Energy, Office of Biological and Environmental Research. This work was supported by USPHS grants awarded to J.P.N. and T.H. T.H. is a Frank and Else Schilling American Cancer Society Professor. H.-k.H. is supported by a fellowship from the Cancer Research Fund of the Damon Runyon-Walter Winchell Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph P. Noel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verdecia, M., Huang, Hk., Dutil, E. et al. Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nat Struct Mol Biol 7, 602–608 (2000). https://doi.org/10.1038/76838

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76838

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing